
Hermes Architecture and User Guide
GengoAI

Version v1.0, February 26, 2020: Initial Release

Table of Contents
1. Overview. 1

2. Installation . 1

3. Core Classes . 2

3.1. AnnotatableType . 3

3.1.1. AttributeType . 3

3.1.2. AnnotationType . 3

3.1.3. RelationType . 4

3.1.4. Annotators. 4

3.2. HString. 6

3.3. Annotation . 15

3.3.1. Creating Annotations . 15

3.3.2. Tags . 17

3.3.3. Core Annotations . 17

3.4. Relation . 18

3.4.1. Dependency Relations . 18

3.4.2. Relation Graphs . 19

3.5. Document . 19

3.5.1. Creating Documents . 20

3.5.2. Working with Documents . 21

3.6. Document Collections and Corpora . 22

3.6.1. Document Formats . 23

3.6.2. Document Collection Creation . 25

3.6.3. Working with Document Collections and Corpora . 26

Accessing Documents . 26

Manipulating the Corpus and its Documents . 26

Querying . 27

Frequency Analysis . 28

Extracting N-Grams . 29

Sampling . 30

Grouping . 30

4. Text Mining . 30

4.1. Lexicons. 32

4.1.1. Reading and Writing Lexicons . 33

4.1.2. Word Lists . 35

4.2. Lyre Expression Language . 35

4.2.1. Lyre Syntax . 36

This . 37

Literals . 37

Lists . 38

Operators . 40

Conditional Statements . 43

Predicates . 43

Transforms . 45

AnnotatableType Accessors. 47

Lexicons and Word Lists . 48

Feature and Count Generators . 48

4.3. Keyword Extraction . 49

4.4. Token-Based Regular Expressions . 51

4.4.1. Regular Expression Syntax . 51

Content Matching. 51

Word Classes . 52

Attributes . 52

Annotations . 53

Relations. 54

Greedy Qualifiers. 54

Logical Operators. 55

Special Constructs . 55

4.5. Caduceus . 56

4.5.1. Rule Processing and Execution . 59

5. Workflows . 60

5.1. Contexts . 61

5.2. Actions . 61

5.3. Defining a Workflow . 61

6. Hermes Applications . 62

6.1. Corpus Application . 62

6.2. Workflow Application . 63

1. Overview
Hermes is a Natural Language Processing framework for Java inspired by the Tipster Architecture and
licensed under the Apache License, Version 2.0 making it free for all uses. The goal of Hermes is to ease
the development and use of NLP technologies by providing easy access to and construction of linguistic
annotations on documents using multiple cores or multiple machines (using Apache Spark). Hermes is
designed to aid users in analyzing large textual data sources making it easy define and perform
complex workflows to extract, analyze, aggregate, and distill information and knowledge.
Conceptually, text in Hermes is represented as a HString (short for Hermes String) which is a
CharSequence that provides access to the:

• Overlapping or enclosed annotations.

• Attributes defining aspects of the text.

• Relations to other HStrings in the same document.

• Character offsets within the document

• Spatial relations (e.g. overlaps, encloses) with other HStrings.

HStrings can be easily manipulated in a fluent manner or by using Lyre a robust extraction and
transformation language that facilitates extraction, filtering, feature generation, counting, and
transformation into other objects. Additionally, Hermes provides extraction based on:

• Lexicons

• Token-based regular expressions

• Machine Learning

• Trigger-based matching via the Caduceus relation-extraction relation.

Throughout Hermes data can be stored and processed in-memory, on-disk, or distributed. This
combination facilitates working with corpora of all sizes. Additionally, Hermes is tightly integrated
with GengoAI’s Apollo machine learning framework allowing easy training of ml models, including
word embeddings (e.g. Glove and Word2Vec), topics (Latent Dirichlet Allocation), and supervised
classification of attributes (e.g. sentiment, part-of-speech).

2. Installation
Hermes requires Java 11 and is available via the maven central repository at:

<dependency>
 <groupId>com.gengoai</groupId>
 <artifactId>hermes</artifactId>
 <version>1.1</version>
</dependency>

Hermes Architecture and User Guide 1

http://cs.nyu.edu/cs/faculty/grishman/tipster.html
https://www.apache.org/licenses/LICENSE-2.0.txt
http://spark.apache.org/
https://github.com/gengoai/apollo

Additionally, a command line installer is provided to download the Hermes (and optionally Spark)
libraries for command line usage as well as language models (e.g. pos tagging, shallow parsing, etc.). As
part of these distributions there are a series of scripts to aid in running Hermes applications (listed in
section Hermes Applications) and for running within a distributed Spark environment. You can
download the installer here. The installer is used in the following manner:

java -jar gengoai-installer.jar COMMAND [OPTIONS] --installDIR=<INSTALL_DIR>

and supports the following commands:

CORE_LIBS Install the core Hermes library and support files
for running hermes from the command line.

SPARK_LIBS Install the required 3rd party dependencies to run
Spark jobs in local mode (this is not needed if
running against a cluster)

MODEL Install one or more models

• Installing models: *

The MODEL command allows for installation of one or more models for a given langauge into the install
directory. The installer command is as follows:

 java -jar gengoai-installer.jar MODEL LANGUAGE MODEL1 MODEL2 MODEL3 ... MODEL_N

The LANGUAGE name is one of the predefined Mango Language enum parameters which can also be
specified using a two-letter Locale code (e.g. en or es). After the language parameter one or more
model names are given. Optionally, a "package" name can be given which is a bundle of models. Each
language will have a "core" package which installs the basic models required for that language. To list
the available models and packages for a language pass in the --ls command line argument.

Hermes stores its data in a resources directory defined in configuration via hermes.resources.dir. By
default this will be set to the hermes directory under the user’s home directory, e.g. /home/user/hermes/.
Note that if the models are set to install in the same directory as the Hermes libs, the installer will
update the supplied config.conf to set the resources directory.

3. Core Classes
The core classes in Hermes consist of AnnotatableType, AttributeType, AnnotationType, RelationType,
HString, Annotation, Document, Relation, Attribute, and Corpus. How the core clases are composed and
inherit from one another is depicted in the following diagram.

Hermes Architecture and User Guide 2

https://gengoai.com/files/gengoai-installer.jar

Figure 1. Diagram of Herme’s Core Class

3.1. AnnotatableType
An annotatable type is a type added to documents through the act of annotation. Annotation can be
performed on a corpus of documents or a single document. Hermes supports the following
Annotatable Types:

3.1.1. AttributeType

An AttributeType defines a named Attribute that can be added to an HString. Each AttributeType has
an associated value type which defines the class of value that the attribute accepts and is specified
using Java Generics as follows:

AttributeType<String> AUTHOR = AttributeType.make("AUTHOR", String.class);
AttributeType<Set<BasicCategories>> CATEGORIES = AttributeType.make("CATEGORIES", parameterizedType(
Set.class,BasicCategories.class))

Annotating for AttributeType adds the attribute and value to an annotation or document. For example,
when annotating for the AttributeType PART_OF_SPEECH, each token annotation has a POS value set
for its PART_OF_SPEECH attribute of. Many AnnotationType will include attributes when being
annotated, e.g. token annotations provide TOKEN_TYPE and CATEGORY attributes.

3.1.2. AnnotationType

An AnnotationType defines an Annotation, which is a typed (e.g. token, sentence, phrase chunk) span
of text on a document having a defined set of attributes and relations. AnnotationTypes are
hierarchical meaning that each type has a parent (ANNOTATION by default) and can have subtypes.
Additionally, each AnnotationType has an associated Tag attribute type, which represents the central
attribute of the annotation type (e.g. entity type for entities and part-of-speech for tokens.). By default,
an annotation’s tag type is inherited from the parent or defined as being a StringTag. The following
code snippet illustrates creating a simple AnnotationType with the default parent and a and an
AnnotationType whose parent is ENTITY.

Hermes Architecture and User Guide 3

/* Assume that SENSE_TAG is a predefined AttributeType */
AnnotationType WORD_SENSE = AnnotationType.make("WORD_SENSE", SENSE_TAG);
/* MY_ENTITY will be a type of ENTITY and have an ENTITY_TYPE tag attribute inherited from ENTITY */
AnnotationType MY_ENTITY = AnnotationType.make(ENTITY, "MY_ENTITY");

3.1.3. RelationType

A RelationType defines the type of arbitrary link, i.e. relation, between two HStrings. Relation types
can define such things as co-reference and syntactic and semantic structure. Defining a RelationType is
performed as follows:

RelationType AGENT = RelationType.make("AGENT");

Figure 2. Pictorial example of annotating an AGENT relation from Jim to moved.

Annotating for RelationType adds a Relation object on the source and target annotation as an outgoing
and incoming annotation respectively. For example, if we had a token Jim as the agent of the verb
moved, and annotated for the AGENT RelationType we would add an outgoing AGENT relation on JIM
with moved as the target and an incoming AGENT relation on moved with JIM as the source. Pictorial
this would be represented as follows:

3.1.4. Annotators

Annotator(s) satisfy, i.e. provide, one or more AnnotatableType (AnnotationType, AttributeType, or
RelationType) by processing a document and adding a new or modifying an existing annotation. In
order to provide the new AnnotatableType an annotator may require one or more AnnotatableType to
be present on the document. For example, an annotator providing the PHRASE_CHUNK
AnnotationType would require the presence of the TOKEN AnnotationType and PART_OF_SPEECH
AttributeType. When annotation is complete, the AnnotatableType is marked as complete on the
document and an annotator provided version is associated with the type.

Sentence Level Annotators: Sentence level annotators work on individual sentences. They have a
minimum requirement of SENTENCE and TOKEN AnnotationType. Additional types can be specified by
overriding the furtherRequires method. Sentence level annotators are a convenience when creating
annotators that work over or within single sentences.

Sub Type Annotators: In certain cases, such as Named Entity Recognition, there may exist a number

Hermes Architecture and User Guide 4

of different methodologies which we want to combine to satisfy a parent AnnotationType. In these
situations a SubTypeAnnotator can be used. A SubTypeAnnotator satisfies an AnnotationType by
calling multiple other annotators that satisfy one or more of its sub types. For example, the
EntityAnnotator provides the ENTITY AnnotationType, by using sub annotators which could be a
combination of rule-based and machine learning-based methods.

Annotator Configuration: Annotators are not normally created and used directly, but instead are
automatically constructed and used when making a call to the annotate methods either on a document
or corpus. AnnotatableType define the annotator that should be constructed as follows:

1. Check if a configuration setting is defined for the type

• TYPE.LANGUAGE.LABEL.annotator

• TYPE.LABEL.annotator

• TYPE.LABEL.annotator.LANGUAGE

where TYPE is one of Annotation, Attribute, Relation, LANGUAGE is the language of the document
either in its full form, or ISO code, and LABEL is the label (name) of the type. Examples of each are as
follows:

• Annotation.ENGLISH.ENTITY.annotator = com.mycompany.EntityAnnotator

• Annotation.ENTITY.annotator = com.mycompany.EntityAnnotator

• Annotation.ENTITY.ENGLISH.annotator = com.mycompany.EntityAnnotator

2. Check for default implementations

• com.gengoai.hermes.LANGUAGE_CODE[LowerCase].LANGUAGE_CODE[UpperCase]
LABEL[CamelCase] "Annotator"

• com.gengoai.hermes.annotator."Default" LANGUAGE_NAME[CamelCase] LABEL[CamelCase]
"Annotator"

• com.gengoai.hermes.annotator."Default" LABEL[CamelCase] "Annotator"

where LANGUAGE_CODE is the ISO code of the document language, LANGUAGE_NAME is the name of
the document’s language, and LABEL is the label (name) of the type. Examples of each are as follows:

• com.gengoai.hermes.en.ENEntityAnnotator

• com.gengoai.hermes.annotator.DefaultEnglishDependencyAnnotator

• com.gengoai.hermes.annotator.DefaultDependencyAnnotator

An example configuration defining a REGEX_ENTITY AnnotationType is as follows:

Hermes Architecture and User Guide 5

Annotation {
 REGEX_ENTITY {
 ENGLISH = @{ENGLISH_ENTITY_REGEX} ①
 JAPANESE = @{JAPANESE_ENTITY_REGEX} ②
 }
}

① Points to a Java Bean named ENGLISH_ENTITY_REGEX defined in configuration.

② Points to a Java Bean named JAPANESE_ENTITY_REGEX defined in configuration.

For more information on Configuration in Hermes, see the Configuration Section of
the Mango User Document.

3.2. HString
An HString (Hermes String) is a Java String on steroids. It represents the base type of all Hermes text
objects. Every HString has an associated span denoting its starting and ending character offset within
the document. HStrings implement the CharSequence interface allowing them to be used in many of
Java’s builtin String methods and they have similar methods as found on Java Strings. Importantly,
methods not modifying the underlying string, e.g. substring and find, return an HString whereas
methods that modify the string, e.g. toLowerCase, return a String object. The String-Like operations are
as follows:

Type Method Description

char charAt(int) Returns the character at the given index in the
HString.

boolean contains(CharSequence) Returns true if the given CharSequence is a
substring of the HString.

boolean contentEquals(CharSequence) Returns true if the given CharSequence is equal to
the string form of the HString.

boolean contentEqualsIgnoreCase(CharSeq
uence)

Returns true if the given CharSequence is equal to
the string form of the HString regardless of case.

boolean endsWith(CharSequence) Returns true if the HString ends with the given
CharSequence.

Language getLanguage() Gets the Language that the HString is written in.

int length() The length in characters of the HString

HString find(String) Finds the given text in this HString starting from
the beginning of this HString. If the document is
annotated with tokens, the match will extend to
the token(s) covering the match.

Hermes Architecture and User Guide 6

Type Method Description

HString find(String, int) Finds the given text in this HString starting from
the given start index of this HString. If the
document is annotated with tokens, the match will
extend to the token(s) covering the match.

Stream<HString> findAll(String) Finds all occurrences of the given text in this
HString.

Matcher matcher(String | Pattern) Returns a Java regular expression over the
HString for the given pattern.

boolean matches(String) Returns true if the HString matches the given
regular expression.

String replace(CharSequence,
CharSequence)

Replaces all substrings of this HString that
matches the given string with the given
replacement.

String replaceAll(CharSequence,
CharSequence)

Replaces all substrings of this HString that
matches the given regular expression with the
given replacement.

String replaceFirst(CharSequence,
CharSequence)

Replaces the first substring of this HString that
matches the given regular expression with the
given replacement.

HString context(AnnotationType, int) Generates an HString representing the given
window size of annotations of the given type on
both the left and right side without going past
sentence boundaries.

HString context(int) Generates an HString representing the given
window size of tokens on both the left and right
side without going past sentence boundaries.

HString rightContext(AnnotationType,
int)

Generates an HString representing the given
window size of annotations of the given type to
the right of the end of this HString without going
past the sentence end.

HString rightContext(int) Generates an HString representing the given
window size of tokens to the right of the end of
this HString without going past the sentence end.

HString leftContext(AnnotationType,
int)

Generates an HString representing the given
window size of annotations of the given type to
the left of the end of this HString without going
past the sentence start.

Hermes Architecture and User Guide 7

Type Method Description

HString leftContext(int) Generates an HString representing the given
window size of tokens to the left of the start of this
HString without going past the sentence start.

List<HString> split(Predicate<? super
Annotation>)

Splits this HString using the given predicate to
apply against tokens.

boolean startsWith(CharSequence) Returns true if the HString starts with the given
CharSequence.

HString subString(int, int) Returns a new HString that is a substring of this
one.

char[] toCharArray() Returns a character array representation of this
HString.

String toLowerCase() Returns a lowercased version of this HString.

String toUpperCase() Returns an uppercased version of this HString.

HString trim(Predicate<? super
HString>)

Trims the left and right ends of the HString
removing tokens matching the given predicate.

HString trimLeft(Predicate<? super
HString>)

Trims the left end of the HString removing tokens
matching the given predicate.

HString trimRight(Predicate<? super
HString>)

Trims the right end of the HString removing
tokens matching the given predicate.

HString union(HString) Constructs a new HString that has the shortest
contiguous span that combines all of the tokens in
this HString and the given HString.

HString union(HString, HString,
HString…)

Static method that constructs a new HString that
has the shortest contiguous span that combines all
of the tokens in all given HStrings.

HString union(Iterable<? extends
HString>)

Static method that constructs a new HString that
has the shortest contiguous span that combines all
of the tokens in all given HStrings.

List<HString> charNGrams(int) Extracts character n-grams of the given order
from the HString

List<HString> charNGrams(int,int) Extracts character n-grams ranging from the given
minimum to given maximum order from the
HString

HStrings store attributes using an AttributeMap which maps AttributeType to values. HStrings
provide Map-like access to their attributes through the following methods:

Hermes Architecture and User Guide 8

Type Method Description

T attribute(AttributeType<T>) Gets the value of the given attribute
associated with the HString or null if
the attribute is not present.

T attribute(AttributeType<T>, T) Gets the value of the given attribute
associated with the HString or the given
default value if the attribute is not
present.

boolean attributeEquals(AttributeType<T>,
Object)

Returns true if the attribute is present
on the HString and its value is equal to
given value.

boolean attributeIsA(AttributeType<T>, Object) Returns true if the attribute is present
on the HString and its value is equal to
given value or is an instance of the
given value if the AttributeType’s value
is an instance of Tag.

boolean hasAttribute(AttributeType<T>) Returns true if the HString has a value
for the given AttributeType.

void removeAttribute(AttributeType<T>) Removes any associated value for the
given AttributeType from the HString.

T put(AttributeType<T>, T) Sets the value of the given
AttributeType returning the old value
or null if there was not one.

void putAdd(AttributeType<T>, Iterable<E>) Adds the given values to the given
attribute which represents a Collection
of values.

void putAll(HString) Copies the attributes and values from
the given HString

void putAll(Map<AttributeType<?>,?) Copies all attributes and values from
the given Map

T putIfAbsent(AttributeType<T>, T) Sets the value of the given attribute to
the given value if the HString does not
already have a value for the attribute.

T computeIfAbsent(AttributeType<T>,
Supplier<T>)

Sets the value of the given attribute to
the given value if the HString does not
already have a value for the attribute.

POS pos() Returns the PART_OF_SPEECH attribute for
the HString or calculates the best part-
of-speech if the attribute is not present.

Hermes Architecture and User Guide 9

Look at the GettingStarted.java and HStringIntroduction.java in the examples
project for more information on handling Attributes.

The power of HStrings is fast access to the Annotation that they overlap and/or enclose. The following
methods define the basic annotation API:

Type Method Description

List<Annotation> annotations() Gets all annotations overlapping with
this HString.

List<Annotation> annotations(AnnotationType) Gets all annotations of the given type
overlapping with this HString.

List<Annotation> annotations(AnnotationType,
Predicate<? super Annotation>)

Gets all annotations of the given type
overlapping with this HString that
evaluate to true using the given
Predicate.

Stream<Annotation> annotationStream() Gets a java Stream over all annotations
overlapping this HString.

Stream<Annotation> annotationStream(AnnotationType) Gets a java Stream over all annotations
of the given type overlapping this
HString.

Annotation asAnnotation() Casts this HString as Annotation if it
already is one otherwise creates a
dummy annotation.

Annotation asAnnotation(AnnotationType) Casts this HString as Annotation as the
given type if it is an instance of that
type otherwise creates a dummy
annotation.

List<Annotation> enclosedAnnotations() Gets all annotations enclosed by this
HString

List<Annotation> enclosedAnnotations(AnnotationTYpe) Gets all annotations of the given type
enclosed by this HString

Annotation first(AnnotationType) Gets the first annotation of the given
type overlapping with this HString or
an empty Annotation if there is none.

Annotation firstToken() Gets the first token overlapping with
this HString or an empty Annotation if
there is none.

void forEach(AnnotationType, Consumer<?
super Annotation>)

Convenience method for processing
annotations of a given type.

Hermes Architecture and User Guide 10

Type Method Description

boolean hasAnnotation(AnnotationType) Returns true if an annotation of the
given type overlaps with this HString.

List<Annotation> interleaved(AnnotationType…) Returns the annotations of the given
types that overlap this string in a
maximum match fashion. Each token in
the string is examined and the
annotation type with the longest span
on that token is chosen. If more than
one type has the span length, the first
one found will be chosen, i.e. the order
in which the types are passed in to the
method can effect the outcome.

boolean isInstance(AnnotationType) Returns true if this HString is an
instance of the given AnnotationType.

Annotation last(AnnotationType) Gets the last annotation of the given
type overlapping with this HString or
an empty Annotation if there is none.

Annotation lastToken() Gets the last token overlapping with this
HString or an empty Annotation if there
is none.

Annotation next(AnnotationType) Gets the annotation of a given type that
is next in order (of span) to this HString.

Annotation sentence() Gets the first sentence overlapping with
this HString or an empty Annotation if
there is none.

List<Annotation> sentences() Gets all sentences overlapping with this
HString.

Stream<Annotation> sentenceStream() Gets all sentences overlapping with this
HString as a Java stream.

List<Annotation> startingHere(AnnotationType) Gets all annotations of the given type
with the starting character offset as this
HString.

Annotation tokenAt(int) Gets the token at the given index
relative to the HString (i.e. 0 for the first
token, 1 for the second token, etc).

List<Annotation> tokens() Gets all tokens overlapping with this
HString.

Hermes Architecture and User Guide 11

Type Method Description

Stream<Annotation> tokenStream() Gets all tokens overlapping with this
HString as a Java stream.

Look at the GettingStarted.java and CustomAnnotator.java in the examples project
for more information on handling Annotations.

Finally, HStrings provide access to the incoming and outgoing Relation directly annotated on them and
in their overlapping annotations.

Type Method Description

void add(Relation) Adds an outgoing relation to the object

void addAll(Iterable<Relation>) Adds multiple outgoing relations to the
object.

RelationGraph annotationGraph(Tuple,
AnnotationType…)

Constructs a relation graph with the
given relation types as the edges and
the given annotation types as the
vertices.

List<Annotation> children() Gets all child annotations, i.e. those
annotations that have a dependency
relation pointing this HString.

List<Annotation> children(String) Gets all child annotations, i.e. those
annotations that have a dependency
relation pointing this HString, with the
given dependency relation.

Tuple2<String,Anno
tation>

dependency() Get dependency relation for this
annotation made up the relation and its
parent.

RelationGraph dependencyGraph() Creates a RelationGraph with
dependency edges and token vertices.

RelationGraph dependencyGraph(AnnotationType…) Creates a RelationGraph with
dependency edges and vertices made
up of the given types.

boolean dependencyIsA(String…) Returns true if the dependency relation
equals any of the given relations

boolean hasIncomingRelation(RelationType) Returns true if an incoming relation of
a given type is associated with the
HString (includes sub-annotations)

Hermes Architecture and User Guide 12

Type Method Description

boolean hasIncomingRelation(RelationType,
String)

Returns true if an incoming relation of
a given type with the given value is
associated with the HString (includes
sub-annotations)

boolean hasOutgoingRelation(RelationType) Returns true if an outgoing relation of a
given type is associated with the
HString (includes sub-annotations)

boolean hasOutgoingRelation(RelationType,
String)

Returns true if an outgoing relation of a
given type with the given value is
associated with the HString (includes
sub-annotations)

HString head() Gets the token that is highest in the
dependency tree for this HString

List<Annotation> incoming(RelationType) Gets all annotations that have relation
with this HString as the target where
this HString includes all sub-
annotations.

List<Annotation> incoming(RelationType, boolean) Gets all annotations that have relation
with this HString as the target,
including sub-annotations if the given
boolean value is true.

List<Annotation> incoming(RelationType, String) Gets all annotations that have relation
with this HString as the target where
this HString includes all sub-
annotations.

List<Annotation> incoming(RelationType, String,
boolean)

Gets all annotations that have relation
with this HString as the target where
this HString, including sub-annotations
if the given boolean value is true.

List<Relation> incomingRelations() Gets all incoming relations to this
HString including sub-annotations.

List<Relation> incomingRelations(boolean) Gets all incoming relations to this
HString including sub-annotations if the
given boolean is true

List<Relation> incoming(RelationType) Gets all relations of the given type
targeting this HString or one of its sub-
annotations.

Hermes Architecture and User Guide 13

Type Method Description

List<Relation> incoming(RelationType, boolean) Gets all relations of the given type
targeting this HString or one of its sub-
annotations if the given boolean is true.

List<Annotation> outgoing(RelationType) Gets all annotations that have relation
with this HString as the source where
this HString includes all sub-
annotations.

List<Annotation> outgoing(RelationType, boolean) Gets all annotations that have relation
with this HString as the source,
including sub-annotations if the given
boolean value is true.

List<Annotation> outgoing(RelationType, String) Gets all annotations that have relation
with this HString as the source where
this HString includes all sub-
annotations.

List<Annotation> outgoing(RelationType, String,
boolean)

Gets all annotations that have relation
with this HString as the source where
this HString, including sub-annotations
if the given boolean value is true.

List<Relation> outgoingRelations() Gets all outgoing relations to this
HString including sub-annotations.

List<Relation> outgoingRelations(boolean) Gets all outgoing relations to this
HString including sub-annotations if the
given boolean is true

List<Relation> outgoing(RelationType) Gets all relations of the given type
originating from this HString or one of
its sub-annotations.

List<Relation> outgoing(RelationType, boolean) Gets all relations of the given type
originating from this HString or one of
its sub-annotations if the given boolean
is true

Annotation parent() Gets the dependency parent of this
HString

void removeRelation(Relation) Removes the given Relation.

Look at the DependencyParseExample.java and SparkSVOExample.java in the
examples project for more information on handling Relations.

Hermes Architecture and User Guide 14

3.3. Annotation
An annotation is an HString that associates an AnnotationType, e.g. token, sentence, named entity, to a
specific span of characters in a document, which may include the entire document. Annotations
typically have attributes, e.g. part-of-speech, entity type, etc, and relations, e.g. dependency and co-
reference, associated with them. Annotations are assigned a long id when attached to a document,
which uniquely identifies it within that document. Annotations provide the following extra methods to
the standard set of HString methods:

Type Method Description

long getId() Gets the unique long id assigned to the
Annotation when attached to a
document.

AnnotationType getType() Returns the AnnotationType associated
with this Annotation

Tag getTag() Returns the Tag value associated with
this annotation (see the Tags section
more information on Tags)

boolean hasTag() Returns true if the annotation has a
value associated with its Tag attribute.

boolean tagEquals(Object) Returns true if the annotation has a tag
value and the tag value is equal to the
given tag (Note that the method
parameter will be decoded into a Tag)

boolean tagIsA(Object) Returns true if the annotation has a tag
value and the tag value is an instance of
to the given tag (Note that the method
parameter will be decoded into a Tag)

void attach() Attaches, i.e. adds, the annotation to its
document.

3.3.1. Creating Annotations

The primary way of creating an annotation is through an AnnotationBuilder on a Document. An
AnnotationBuilder provides the following methods for constructing an annotation:

Type Method Description

AnnotationBuilder attribute(AttributeType, Object) Sets the value of the given
AttributeType on the new Annotation to
the given value.

Hermes Architecture and User Guide 15

Type Method Description

AnnotationBuilder attributes(Map<AttributeType<?>,?>) Copies the AttributeTypes and values
from the map into the new annotation.

AnnotationBuilder attributes(HString) Copies the AttributeTypes and values
from the given HString into the new
annotation.

AnnotationBuilder bounds(Span) Sets the bounds (start and end
character offset) of the annotation to
that of the given span.

AnnotationBuilder start(int) Sets the start character offset of the
annotation in the document.

AnnotationBuilder end(int) Sets the end character offset of the
annotation in the document.

AnnotationBuilder from(HString) Conveinince method for calling
bounds(HString), attributes(HString),
and relations(HString).

AnnotationBuilder relation(Relation) Adds the given relation to the new
Annotation as an outgoing relation.

AnnotationBuilder relation(Iterable<Relation>) Adds all of the given relation to the new
Annotation as an outgoing relations.

Annotation createAttached() Creates and attaches the annotation to
the document.

Annotation createDetached() Creates the annotation but does not
attach it to the document.

As an example of creating Annotations, let’s assume we want to add ENTITY annotations to all
occurrences of GengoAI in a document. We can do this as follows:

Document doc = ...;

int startAt = 0;
HString mention;
while(!(mention=doc.find("GengoAI", startAt)).isEmpty()){ ①
 doc.annotationBuilder(Types.ENTITY) ②
 .bounds(mention)
 .attribute(Types.ENTITY_TYPE, Entities.ORGANIZATION) ③
 .createAttached();
 startAt = mention.end(); ④
}

① Continue while we have found a mention of "GengoAI" from the startAt position.

Hermes Architecture and User Guide 16

② We will create an AnnotationBuilder with type ENTITY and assume the bounds of the mention
match.

③ Set the ENTITY_TYPE attribute to the value ORGANIZATION.

④ Increment the next start index.

The difference between an attached and detached annotation is attached annotations (1) have an
assigned id, (2) are accessible through the HString annotation methods, and (3) can be the target of
relations. Detached annotations are meant to be used as intermediatory or temporary annotations
often constructed by an Annotator which uses a global document context to filter or combine
annotations.

3.3.2. Tags

Every AnnotationType has an associated Tag attribute type. The Tag defines the central attribute of the
annotation type. For example, Hermes defines the PART_OF_SPEECH tag to be the central attribute of
tokens and the ENTITY_TYPE tag as the central attribute of entities. An annotation’s Tag attribute can
be accessed through the getTag() method on the annotation or through the
attribute(AttributeType<?>) method, note that an annotation’s tag is assigned to the specific
AttributeType (e.g. PART_OF_SPEECH) but is also accessible through the TAG AttributeType.

Tags have the following properties:

name The name of the tag, e.g. PART_OF_SPEECH. For tags which are hierarchical the name is the
full path without the root, e.g. ORGANIZATION$POLITICAL_ORGANIZATION$GOVERNMENT.

label The label of the tag, which for hierarchal tags is the leaf level name, i.e. for
ORGANIZATION$POLITICAL_ORGANIZATION$GOVERNMENT the label would be
GOVERNMENT.

parent The parent tag of this one, where null means the tag is a root. Note all non-hierarchical tags
have a null parent.

Names and labels must be unique within in a tag set, i.e. an entity type tag set can only contain one tag
with the label QUANTITY meaning you are not allowed to define a MEASUREMENT$QUANTITY and
NUMBER$QUANTITY.

3.3.3. Core Annotations

Hermes provides a number of annotation types out-of-the-box and the ability to create custom
annotation types easily from lexicons and existing training data. Here, we discuss the core set of
annotation types that Hermes provides.

Hermes Architecture and User Guide 17

TOKEN Tokens represent, typically, the lowest level of annotation on a document. Hermes
equates a token to mean a word (this is not always the case in other libraries
depending on the language). A majority of the attribute and relation annotators are
designed to enhance (i.e. add attributes and relations) to tokens. For example, the part-
of-speech annotator adds part-of-speech information to tokens and the dependency
annotator provides dependency relations between tokens.

SENTENCE Sentences represent a set of words typically comprised of a subject and a predict.
Sentences have an associated INDEX attribute that denote the index of the sentence in
the document.

PHRASE_CHUNK Phrase chunks represent the output of a shallow parse (sometimes also referred to as a
light parse). A chunk is associated with a part-of-speech, e.g noun, verb, adjective, or
preposition.

ENTITY The entity annotation type serves as a parent for various named entity recognizers.
Entities are associated with an EntityType, which is a hierarchy defining the types of
entities (e.g. a entity type of MONEY has the parent NUMBER).

Take a look at CustomAnnotator.java, LexiconExample.java, and
GettingStarted.java in the Hermes examples project to see examples of using
annotations and creating custom annotation types.

3.4. Relation
Relations provide a mechanism to link two Annotations. Relations are directional, i.e. they have a
source and a target, and form a directed graph between annotations on the document. Relations can
represent any type of link, but often represent syntactic (e.g. dependency relations), semantic (e.g.
semantic roles), or pragmatic (e.g. dialog acts) information. Relations, like attributes, are stored as key
value pairs with the key being the RelationType and the value being a String representing the label.
Relations are associated with individual annotations (i.e. tokens for dependency relations, entities for
co-reference). Methods on HString allow for checking for and retrieving relations for sub-annotations
(i.e. ones which it overlaps with), which allows for analysis at different levels, such as dependency
relations between phrase chunks.

3.4.1. Dependency Relations

Dependency relations are the most common relation and connect and label pairs of words where one
word represents the head and the other the dependent. The assigned relations are syntactic, e.g. nn for
noun-noun, nsubj for noun subject of a predicate, and advmod for adverbial modifier, and the relation
points from the dependent (source) to the head (target). Because of their wide use, Hermes provides
convenience methods for working dependency relations. Namely, the parent and children methods on
HString provide access to the dependents and heads of a specific token and the dependencyRelation
method provides access to the head (parent) of the token and the relation between it and its head.

Hermes Architecture and User Guide 18

3.4.2. Relation Graphs

In some cases it is easier to work with annotations and relations as a real graph. For these cases,
Hermes provides the dependencyGraph and annotationGraph methods on HString. These methods
construct a Mango Graph![1] with which you can render to an image, perform various clustering
algorithms, find paths between annotations, and score the annotations using methods such as
PageRank.

3.5. Document
A Document is represented as a text (HString) and its associated attributes (metadata), annotations,
and relations between annotations. Every document has an id associated with it, which should be
unique within a corpus. Documents provide the following additional methods on top of the ones
inherited from HString:

Type Method Description

void annotate(AnnotatableType…) Annotates the document for the given
types ensuring that all required
AnnotatableTypes are also annotated.

Annotation annotation(long) Retrieve an Annotation by its unique id.

void attach(Annotation) Attaches the given annotation to the
document assigning it a unique
annotation id.

Set<AnnotatableTyp
e>

completed() Returns the set of AnnotatableType that
have been annotated or marked as
being annotated on this document.

String getAnnotationProvider(AnnotatableType) Returns the name and version of the
annotator that provided the given
AnnotatableType.

boolean isCompleted(AnnotatableType) Returns true if the given
AnnotatableType has been annotated or
marked as being annotated on this
document.

int numberOfAnnotations() Returns the number of Annotation on
the document.

boolean remove(Annotation) Removes the given annotation
returning true if it was successfully
removed.

void removeAnnotationType(AnnotationType) Removes all annotations of the given
type and marks that type as incomplete.

Hermes Architecture and User Guide 19

Type Method Description

void setCompleted(AnnotatableType,String) Sets the given AnnotatableType as being
complete with the given provider.

Document fromJson(String) Static method to deserialize a Json
string into a Document.

String toJson() Serializes the document into Json
format.

3.5.1. Creating Documents

Documents are created using a DocumentFactory, which defines the preprocessing (e.g whitespace and
unicode normalization) steps (TextNormalizers) to be performed on raw text before creating a
document and the default language with which the documents are written. The default
DocumentFactory has its default language and TextNormalizers specified via configuration as follows:

hermes {

 ## Set default language to English
 DefaultLanguage = ENGLISH

 #By default the document factory will normalize unicode and white space
 preprocessing {
 normalizers = hermes.preprocessing.UnicodeNormalizer
 normalizers += "hermes.preprocessing.WhitespaceNormalizer"
 normalizers += "hermes.preprocessing.HtmlEntityNormalizer"
 }

}

The default set of TextNormalizers includes:

1. A UnicodeNormalizer which normalizes Strings using NFKC normalization (Compatibility
decomposition, followed by canonical composition).

2. A WhitespaceNormalizer which collapses multiple whitespace and converts newlines to linux (\n)
format.

3. A HtmlEntityNormalizer which converts named and hex html entities to characters.

The following snippet illustrates creating a document using the default DocumentFactory.

Document document = DocumentFactory.getInstance().create("...My Text Goes Here...");

For convenience a document can also be created using static methods on the document class, which
will use the default DocumentFactory as follows:

Hermes Architecture and User Guide 20

Document d1 = Document.create("...My Text Goes Here..."); ①
Document d2 = Document.create("my-unique-id", "...My Text Goes Here..."); ②
Document d3 = Document.create("Este es un documento escrito en español.", Language.SPANISH); ③
Document d4 = Document.create("...My Text Goes Here...", ④
 Maps.of($(Types.SOURCE, "The document source"),
 $(Types.AUTHOR, "A really important person")));

① Creation of a document specifying only the content.

② Creation of a document specifying its unique id and its content.

③ Creation of a document specifying the language the document is written in.

④ Creation of a document specifying a set of attributes associated with it.

DocumentFactories provide additional methods for constructing documents from pre-tokenized text
(fromTokens) and to force the factory to ignore the string preprocessing (createRaw).

3.5.2. Working with Documents

Annotations are spans of text on the document which have their own associated set of attributes and
relations. Annotations are added to a document using a AnnotationPipeline. The pipeline defines the
type of annotations, attributes, and relations that will be added to the document. However, Document
and Corpora provide a convenience method annotate(AnnotatableType…) that takes care of
constructing the pipeline and calling its annotation method. The following snippet illustrates
annotating a document for TOKEN, SENTENCE, and PART_OF_SPEECH:

Document d1 = Document.create("...My Text Goes Here...");
d1.annotate(Types.TOKEN, TYPES.SENTENCE, TYPES.PART_OF_SPEECH) ①

① The Types class contains a number of pre-defined AnnotatableType

Ad-hoc annotations are easily added using one of the createAnnotation methods on the document. The
first step is to define your AnnotationType:

AnnotationType animalMention = Types.type("ANIMAL_MENTION");

Now, let’s identify animal mentions using a simple regular expression. Since Document extends
HString we have time saving methods for dealing with the textual content. Namely, we can easily get a
Java regex Matcher for the content of the document by:

Matcher matcher = document.matcher("\\b(fox|dog)\\b");

With the matcher, we can iterate over the matches and create new annotations as follows:

Hermes Architecture and User Guide 21

while (matcher.find()) {
 document.createAnnotation(animalMention,
 matcher.start(),
 matcher.end());
}

More complicated annotation types would also provide attributes, for example entity type, word sense,
etc. Once annotations have been added to a document they can be retrieved using the
annotations(AnnotationType) method.

document.get(animalMention)
 .forEach(a -> System.out.println(a + "[" + a.start() + ", " + a.end() + "]"));

In addition, convenience methods exist for retrieving tokens, tokens(), and sentences, sentences().

document.sentences().forEach(System.out::println);

A document stores its associated annotations using an AnnotationSet. The default implementation uses
an interval tree backed by a red-black tree, which provides O(n) storage and average O(log n) for
search, insert, and delete operations.

3.6. Document Collections and Corpora
A collection of documents in Hermes is represented using either a DocumentCollection or Corpus. The
difference between the two is that a Corpus represents a persistent collection of documents whereas a
DocumentCollection is a temporary collection used for ad-hoc analytics or to import documents into a
corpus. The figure below, shows a typical flow of data in which: (1) A document is collection is created
by reading files in a given format (e.g. plain text, html, pdf, etc.); (2) The files are imported into a
Corpus for processing; (3) Operations, e.g. annotation, are performed over the corpus which allows
these operations to be persisted; and (4) Optionaly, the documents in the corpus in are exported to a set
of files in a given format (e.g. CoNLL).

Figure 3. Typical flow of documents from Raw input to Corpus creation.

Hermes Architecture and User Guide 22

Hermes provides the ability to easily create, read, write, and analyze document collections and corpora
locally and distributed. Both makes it easy to annotate documents with a desired set of annotations,
attributes, and relations, query the documents using keywords, and perform analyses such as term
extraction, keyword extraction, and significant n-gram extraction.

3.6.1. Document Formats

Hermes provides a straightforward way of reading and writing documents in a number of formats,
including plain text, csv, and json. In addition, many formats can be used in a "one-per-line" corpus
where each line represents a single document in the given format. For example, a json one-per-line
corpus has a single json object representing a document on each line of the file. Each document format
has an associated set of DocFormatParameters that define the various options for reading and writing
in the format. By default the following parameters can be set:

defaultLanguage The default language for new documents. (default calls
Hermes.defaultLanguage())

normalizers The class names of the text normalizes to use when constructing documents.
(default calls TextNormalization.configuredInstance().getPreprocessors())

distributed Creates a distributed document collection when the value is set to true
(default false).

saveMode Whether to overwrite, ignore, or throw an error when writing a corpus to an
existing file/directory (default ERROR).

The following table lists the included document formats with their added format parameters and
read/write capabilities:

Table 1. Document formats included with Hermes

Format Name Read Write
Support

OPL
Description

TEXT Plain text documents.

• Standard Document Format Parameters Only

PTB Penn Treebank bracketed (.mrg) files

• Standard Document Format Parameters Only

HJSON Hermes Json format.

• Standard Document Format Parameters Only

CONLL CONLL format.

Hermes Architecture and User Guide 23

Format Name Read Write
Support

OPL
Description

• docPerSentence=[true|false]: One document per sentence when true (default: true).

• fields=<list of fields>: list of string denoting the field names (default: ["WORD", "POS",
"CHUNK")]).

• fs=<String>: Field separator (default: "\\s+")

• overrideSentences=[true|false]: Override the CONLL sentence boundaries with Hermes
boundaries when true (default: false)

The following fields are supported:

• INDEX - The index of the word in the sentence.

• WORD - The word.

• LEMMA - The lemmatized form of the word.

• UPOS - The universal part-of-speech tag of the word.

• POS - The part-of-speech tag of the word.

• CHUNK - IOB annotated Phrase Chunks.

• ENTITY - IOB annotated Named Entities.

• HEAD - The index of this word’s syntactic head in the sentence.

• DEP_REL - The dependency relation of this word to its head.

• IGNORE - Ignores the field.

CSV Delimited separated files (e.g. CSV and TSV)
with each row representing a document.

• columns=<list of column names>: The list of column names when file does not have a header
(default: empty).

• content=<String>: Name of the content column (default: "content").

• id=<String>: Name of the document id column (default: "id").

• language=<String>: Name of the language column (default: "language").

• comment=<Character>: The character used for comments in the file (default: '#').

• delimiter=<Character>: The character used for delimiting columns in the file (default: ',').

• hasHeader=[true|false]: The file has a header naming the columns when true (default: false).

Note that columns name will be autogenerated as C0, C1, …, CN when no column names are given and
there is no header in the file. Additional columns in the file not assigned to "id", "language", or
"content" will be treated as document level attributes.

Hermes Architecture and User Guide 24

Format Name Read Write
Support

OPL
Description

TWITTER_SEARCH Twitter API Search result

• Standard Document Format Parameters Only

POS Format with words separated by whitespace
and POS tags appended with an underscore,
e.g. The_DT brown_JJ.

• Standard Document Format Parameters Only

TAGGED Format with words separated by whitespace
and sequences labeled in SGML like tags, e.g.
<TAG>My text</TAG>.

• annotationType=<String>: The annotation type that sequences are an instance of (default: ENTITY).

The Format Name is used to identify the document format to read and to use the format with one-per-
line, you can append "_opl" to the format name.

3.6.2. Document Collection Creation

The DocumentCollection class provides the following methods to create a document collection from a
series of documents:

Type Method Description

DocumentColle
ction

create(String) creates a document collection from documents stored in
the format and at the location specified by the given
specification.

DocumentColle
ction

create(Specification) creates a document collection from documents stored in
the format and at the location specified by the given
specification.

DocumentColle
ction

create(Document…) Creates a document collection in memory containing the
given documents.

DocumentColle
ction

create(List<Document>) Creates a document collection in memory containing the
given documents.

DocumentColle
ction

create(MStream<Document>) Creates a document collection from the given Mango
stream where the corpus will be distributed if the given
Mango stream is also distributed and a streaming corpus
otherwise.

Hermes Architecture and User Guide 25

Type Method Description

DocumentColle
ction

create(Stream<Document>) Creates a stream-based corpus containing the given
documents.

The following is an example of creating a document collection from Twitter data:

DocumentCollection twitter = DocumentCollection.create("twitter_search::/data/twitter_search_results/"
);

A more complex example is creation from CSV files:

DocumentCollection csv = DocumentCollection.create(
"csv::/data/my_csv.csv;columns=id,content,language,author,source");

3.6.3. Working with Document Collections and Corpora

The Hermes Corpus and DocumentCollection class provides a variety of different methods for
accessing, analyzing, and manipulating its documents.

Accessing Documents

Document collections and corpora allow for the following access to their collection of documents:

Type Method Description

Iterator<Document> iterator() Gets an iterator over the documents in
the corpus.

MStream<Document> stream() Returns a Mango stream over the
documents in the corpus.

MStream<Document> parallelStream() Returns a parallel Mango stream over
the documents in the corpus.

In addition to the methods above, corpora allow for access to individual documents using get(String)
method where the string parameter is the document id.

Manipulating the Corpus and its Documents

The main method for manipulation of a collection is through the
update(SerializableConsumer<Document>) method, which processes each document using the given
consumer. For document collections this method acts as a map whereas for corpora the update persists
to the underlying storage.

Corpora also allow for individual documents to be udpated via the update(Document) method.

Hermes Architecture and User Guide 26

Additionally, documents can be added and removed from corpora using the following set of methods:

Type Method Description

void add(Document) Adds a document to the corpus.

void addAll(Iterable<Document>) Adds the given documents to the
corpus.

void importDocuments(String) Imports documents from the given
document collection specification.

boolean remove(Document) Returns true if the given Document was
successfully removed from the corpus.

boolean remove(String) Returns true if the document with the
given document id was successfully
removed from the corpus.

Querying

Hermes provides a simple boolean query language to query documents. The query syntax is as follows:

Operator Description

AND Requires the queries, phrases, or words on the left and right of the operator to
both be present in the document. (AND is case insensitive)

OR Requires for one of the queries, phrases, or words on the left and right of the
operator to be present in the document. (OR is case insensitive)

- Requires the query, phrase, or word on its right hand side to not be in the
document.

$ATTRIBUTE='VALUE' Requires the value of the document attribute describe after the $ to equal the
value in the parenthesis.

'PHRASE' Searches for the phrase defined between the single quotation marks. (note if the
phrase includes a single quote it can be escaped using the backslash character.)

WORD Searches for the word (note the word cannot start or end with parenthesis and
cannot have whitespace)

Multiword phrases are expressed using quotes, e.g. 'United States' would match the entire phrase
whereas United AND States only requires the two words to present in the document in any order. The
default operator when one is not specified is OR, i.e. United States would be expanded to United OR
States.

Hermes Architecture and User Guide 27

Corpus corpus = ...;
SearchResults results = corpus.query("'United States' AND 'holiday'");
System.out.println("Query: " + results.getQuery());
System.out.println("Total Hits: " + results.size());
for(Document document : results){
 System.out.println(document.getTitle());
}

As shown in the code snippet above, querying a corpus results in a SearchResults which retains the
query that generated results and a document collection view of the results.

Frequency Analysis

A common step when analyzing a corpus is to calculate the term and document frequencies of the
words in its documents. In Hermes, the frequency of any type of annotation can be calculated across a
corpus using the termCount(Extractor) method. The analysis is defined using an Extractor object, which
provides a fluent interface for defining annotation type, conversion to string form, filters, and how to
calculate the term values (see Text Mining for more information on Extractors). An example is as
follows:

Corpus corpus = ...;
Extractor spec = TermExtractor.builder() ①
 .toLemma()
 .ignoreStopwords()
 .valueCalculator(ValueCalculator.L1_NORM);
Counter<String> tf = corpus.termCount(spec); ②

① Shows creation of the TermExtractor which defines the way we will extract terms. Here we specify
that we want lemmas, will ignore stopwords, and want the returning counter to have its values L1
normalized.

② Shows the calculating of term frequencies over the entier corpus.

By default, the TermExtractor will specify TOKEN annotations which will be converted to a string form
using the toString method, all tokens will be kept, and the raw frequency will be calculated.

In a similar manner, document frequencies can be extracted using the documentCount(Extractor)
method. An example is as follows:

Corpus corpus =...;
Extractor spec = TermExtractor.builder()
 .toLemma()
 .ignoreStopwords();
Counter<String> tf = corpus.documentCount(spec);

Both the termCount and documentCount methods take an Extractor, which can include any type of

Hermes Architecture and User Guide 28

extraction technique (discussed in Text Mining).

Extracting N-Grams

While n-grams can be extracted using the termCount and documentCount feature, Hermes provides the
nGramCount(NGramExtractor) method for calculating document-based counts of n-grams where the n-
gram is represented as Tuple of string. An example of gathering bigram counts from a corpus is as
follows:

Corpus corpus = ...;
NGramExtractor extractor = NGramExtractor.bigrams() ①
 .toLemma()
 .ignoreStopWords()
 .valueCalculator(ValueCalculator.L1_NORM);
Counter<Tuple> tf = corpus.nGramCount(extractor); ②

① Shows creation of the n-gram extractor which defines the way we will extract n-grams. Here we
specify that we want to extract unigrams, bigrams, and trigrams and that will convert to lemma
form, ignore stopwords, and want the returning counter to have its values L1 normalized.

② Shows the calculating of n-gram frequencies over the entier corpus.

By default, the NGramExtractor will specify TOKEN annotations which will be converted to a string
form using the toString method, all tokens will be kept, and the raw frequency will be calculated.

In addition, Hermes makes it easy to mine "significant bigrams" from a corpus using the
significantBigrams(NGramExtractor, int, double) and significantBigrams(NGramExtractor, int,
double, ContingencyTableCalculator) methods. Both methods take an NGramExtractor to define how the
terms should be extracted (note that the min and max order is ignored), a (int) minimum count
required to consider a bigram, and a (double) minimum score for a bigram to be considered
significant. Additionally, a ContingencyTableCalculator can be given which is used to calculate the score
of a bigram (by default Association.Mikolov is used which is the calculation used within word2vec to
determine phrases). Both methods return a Counter<Tuple> containing the bigrams and their score.
The following example illustrates finding significant bigrams using Normalized Pointwise Mutual
Information (NPMI):

Corpus corpus = ...;
NGramExtractor extractor = NGramExtractor.bigrams()
 .toLemma()
 .ignoreStopWords()
 .valueCalculator(ValueCalculator.L1_NORM);
Counter<Tuple> bigrams = corpus.significantBigrams(extractor, 5, 0, Association.NPMI); ①

① Extract significant bigrams which have a minimum count of 5 and a minimum NPMI of 0.

Hermes Architecture and User Guide 29

Sampling

Often times we only want to use a small portion of a corpus to test for analysis in order to test it out.
The corpus class provides a means for performing reservoir sampling on the corpus using the
following two methods:

sample(int size)
sample(int size, Random random)

Both return a new corpus and take the sample size as the first parameter. The second method takes an
additional parameter of type Random which is used to determine inclusion of a document in the
sample. Note that for non-distributed corpora the sample size must be able to fit into memory.

Grouping

The Corpora class provides a groupBy(SerializableFunction<? super Document, K>) method for
grouping documents by an arbitrary key. The method returns a Multimap<K, Document> where K is the
key type and takes a function that maps a Document to K. The following code example shows where
this may of help.

Corpus corpus = ...;
corpus.groupBy(doc -> doc.getAttributeAsString(Types.SOURCE)); ①

① Group documents by their source.

Note that because this method returns a Multimap, the entire corpus must be able to fit in memory.

4. Text Mining
The goal of Text Mining is to turn unstructured data into high-quality structured information. Hermes
provides a variety of tools to perform text mining over corpora, some of which were described in the
Document Collections and Corpora section. Fundamental to text mining in Hermes is the concept of a
Extractor and the Extraction it produces. Extractors are responsible for taking an HString as input and
producing an Extraction as output via the Extraction extract(@NonNull HString hString) method. The
class hierarchy for Extractors is as follows (note names in Yellow represent abstract classes or
interfaces):

Hermes Architecture and User Guide 30

https://en.wikipedia.org/wiki/Reservoir_sampling:

Figure 4. Inheritance hierarchy for extractors.

The Lexicon extractor uses a lexicon to match terms in an HString and described in detail in Lexicons.
The KeywordExtractor extracts key phrases from an HString based on a defined algorithm and
described in detail in Keyword Extraction. The FeaturizingExtractor combines an extractor with a
Featurizer allowing for the output of the extractor to be directly used as features for machine learning.

The LyreExpression extractor is based on Hermes’s Lyre Expression Language. The
MultiPhaseExtractor is the base for TermExtractor and NGramExtractor which we looked at in the
<<#fa> section on corpora. Multi-phase extractors define a series of steps to transforming an HString
into an Extraction, which include the annotation types to extract, filters to apply on the extracted
annotations, methodology for trimming the extracted annotations, methodology for converting the
annotations into Strings, and a prefix for when the extraction is used as a machine learning feature.

Every extractor produces an Extraction. Extractions can provide their results as an Iterable of HString
or String or a Counter<String> via the following methods:

Type Method Description

int size() The number of items extracted.

Iterable<String> string() Returns the extracted items as an
Iterable of String.

Counter<String> count() Returns the extracted items as a
Counter of String.

Iterator<HString> iterator() Returns an Iterator of the extracted
HString (Note that if the extractor does
not support HString it will generate a
fragment).

Note that how the results are constructed are dependent on the extraction technique. For example,
some extractions only provide fragments (i.e. non-attached) HString due to the way extraction is
performed.

Hermes Architecture and User Guide 31

4.1. Lexicons
A traditional approach to information extraction incorporates the use of lexicons, also called
gazetteers, for finding specific lexical items in text. Hermes’s Lexicon classes provide the ability to
match lexical items using a greedy longest match first or maximum span probability strategy. Both
matching strategies allow for case-sensitive or case-insensitive matching and the use of constraints
(using the Lyre expression language), such as part-of-speech, on the match.

Lexicons are managed using the LexiconManager, which acts as a cache associating lexicons with a
name and a language. This allows for lexicons to be defined via configuration and then to be loaded
and retrieved by their name (this is particularly useful for annotators that use lexicons).

Lexicons are defined using a LexiconSpecification in the following format:

lexicon:(mem|disk):name(:(csv|json))*::RESOURCE(;ARG=VALUE)*

The schema of the specification is "lexicon" and the currently supported protocols are: * mem: An in-
memory Trie-based lexicon. * disk: A persistent on-disk based lexicon.

The name of the lexicon is used during annotation to mark the provider. Additionally, a format (csv or
json) can be specified, with json being the default if none is provided, to specify the lexicon format
when creating in-memory lexicons. Finally, a number of query parameters (ARG=VALUE) can be given
from the following choices:

• caseSensitive=(true|false): Is the lexicon case-sensitive (true) or case-insensitive (false) (default
false).

• defaultTag=TAG: The default tag value for entry when one is not defined (default null).

• language=LANGUAGE: The default language of entries in the lexicon (default Hermes.defaultLanguage())

CSV lexicons allow for the additionaly following parameters:

• lemma=INDEX: The index in the csv row containing the lemma (default 0).

• tag=INDEX: The index in the csv row containing the tag (default 1).

• probability=INDEX: The index in the csv row containing the probability (default 2).

• constraint=INDEX: The index in the csv row containing the constraint (default 3).

• language=LANGUAGE: The default language of entries in the lexicon (default Hermes.defaultLanguage())

As an example, we can define the following lexicons in our configuration:

Hermes Architecture and User Guide 32

person.lexicon = lexicon:mem:person:json::<hermes.resources.dir:ENGLISH>person.lexicon ①
huge.lexicon = lexicon:disk:everything:<hermes.resources.dir:ENGLISH>huge.lexicon ②
csv.lexicon = lexicon:mem:adhoc:csv::/data/test/import.csv;probability=-
1;constraint=2;caseSensitive=true;tagAttribute=ENTITY_TYPE;defaultTag=PERSON ③

① Defines an in-memory lexicon stored in json format named "person".

② Defines a disk-based lexicon named "everything".

③ Defines an in-memory lexicon stored in csv format named "adhoc" that is case-sensitive, has a tag
attribute of ENTITY_TYPE with a default tag of PERSON, does not use probabilities, and the
constraint is stored in the second (0-based) column.

Note that we can use <hermes.resources.dir:ENGLISH> to specify that file is located in the ENGLISH
directory of the Hermes resources, which is defined in the config option hermes.resources.dir. The
language name can be omitted when the lexicon is in the default resources.

We can retrieve a lexicon from the LexiconManager as follows:

Lexicon lexicon = LexiconManager.getLexicon("person.lexicon"); ①
Lexicon undefined = LexiconManager.getLexicon("undefined.lexicon"); ②

① Retrieve the person lexicon we defined previously in our config file.

② Attempt to retrieve a lexicon that has not been defined via configuration. In this case, it will try to
find a json formatted lexicon with the named "undefined.lexicon.json" in one of the resource
directories Hermes knows about.

The lexicon manager allows for lexicons to be manually registered using the register method, but
please note that this registration will not carry over to each node in a distributed environment.

Take a look at LexiconExample.java in the Hermes examples project to see examples
of constructing and using lexicons.

4.1.1. Reading and Writing Lexicons

The LexiconIO class provides static methods for reading and writing in-memory lexicons. The primary
format of a Hermes lexicon is Json and is described as follows:

Hermes Architecture and User Guide 33

{
 "@spec": { ①
 "caseSensitive": false,
 "tagAttribute": "ENTITY_TYPE",
 "language": "ENGLISH
 },
 "@entries": [②
 {
 "lemma": "grandfather",
 "tag": "GRANDPARENT"
 },
 {
 "lemma": "mason",
 "tag": "OCCUPATION",
 "probability": 0.7,
 "constraint": "!#NNP"
 },
 {
 "lemma": "housewife",
 "tag": "OCCUPATION"
 }
]
}

① The "@spec" section defines the specification of the lexicon.

② The "@entries" section is where the lexical entries are specified.

As seen in the snippet the json file starts with a specification section, "@spec", in which the valid
parameters are:

• caseSensitive: Is the lexicon case-sensitive (true) or case-insensitive (false) (default false).

• language: The language of the entries in the lexicon (default Hermes.defaultLanguage()).

• tag: The default tag value for entry when one is not defined (default null).

The "@entries" section defines the individual lexicon entries in the lexicon with the following valid
parameters:

• lemma: The lexical item to be matched (no default must be set).

• tag: The tag value associated with the lemma that the tagAttribute will be set to (default lexicon
default tag).

• probability: The probability of the lexical item associated with its tag (default 1.0).

• constraint: The constraint (using a Lyre expression) that must be satisfied for the lexical match to
take place (default null).

• tokenLength" Optional parameter the defines the number of tokens in the entry (default calculated
based on the lexicon language).

Hermes Architecture and User Guide 34

Additionally, csv based lexicons can be imported using LexiconIO.importCSV(Resource,
Consumer<CSVParameters>) where the Resource defines the location of the CSV file and the Consumer is
used to specify the lexicon parameters. The CSVParameters defines the columns for lemmas, tags,
probabilities, and constraints as well as the standard lexicon information of case-sensitive or
insensitive matching, tag attribute, and default tag.

4.1.2. Word Lists

Word lists provide a set like interface to set of vocabulary items. Implementations of WordList may
implement the PrefixSearchable interface allowing prefix matching. Word lists are loaded from plain
text files with "#" at the beginning of a line denoting a comment. Whereas lexicons provide a robust
way to match and label HStrings, _WordList_s provide a simple means of determining if a word/phrase
is defined. Note that convention states that if the first line of a word list is a comment stating "case-
insensitive" then loading of that word list will result in all words being lower-cased.

4.2. Lyre Expression Language
Lyre (Linguistic querY and extRaction languagE) provides a means for querying, extracting, and
transforming HStrings. A LyreExpression represents a series of steps to perform over an input HString
which can be used for querying (i.e. acting as a Java Predicate) and extracting and transforming (i.e.
like a Java Function) using the following methods:

Type Method Description

String apply(HString) Applies the expression returning a
String value.

double applyAsDouble(HString) Applies the expression returning a
double value or NaN if the return value
is not convertible into a double.

double applyAsDouble(Object) Applies the expression returning a
double value or NaN if the return value
is not convertible into a double.

List<Feature> applyAsFeatures(HString) Applies the expression returning a list
of Feature for machine learning.

HString applyAsHString(HString) Applies the expression returning it is an
HString using
HString.toHstring(Object).

List<Object> applyAsList(Object) Applies the expression returning it is a
list of Object.

List<T> applyAsList(Object, Class<T>) Applies the expression returning it is a
list of type T.

Object applyAsObject(Object) Applies the expression.

Hermes Architecture and User Guide 35

Type Method Description

String applyAsString(Object) Applies the expression returning it as a
String value.

Counter<String> count(HString) Applies the expression returning a
count over the string results.

boolean test(HString) Returns true if the expression evaluates
to true.

boolean testObject(HString) Returns true if the expression evaluates
to true.

A LyreExpression can be created by parsing a string representation using Lyre.parse(String) or by
using the LyreDSL class to programmatically build up the expression.

import static LyreDSL.*;

LyreExpression l1 = Lyre.parse("map(filter(@TOKEN, isContentWord), lower)");
LyreExpression l2 = map(filter(annotation(Types.TOKEN), isContentWord), lower);

The code snippet illustrated above gives an example of creating the same expression using both the
String representation and the DSL methods. The constructed expression extracts all TOKEN
annotations from the HString input filtering them to keep only the content words (i.e. non-stopwords)
with the resulting list of filtered tokens mapped to a lowercase resulting a list of string.

4.2.1. Lyre Syntax

Lyre expressions attempt to process and convert input and output types in an intelligent manner. For
example, a method that transforms an HString into a String will apply itself to each HString in List.
Note that to make these operations more explicit, you can use the map and filter commands. Lyre is
comprised of the following types of expressions (defined in
com.gengoai.hermes.extraction.lyre.LyreExpressionType):

PREDICATE

A predicate expression evaluates an Object or HString for a given condition returning true or false.
When the object passed in is a collection, the predicate acts as a filter over the items in the collection.

HSTRING

An HString expression evaluates an Object or HString returning an HString as the result. If the
resulting object is not already an HString, HString.toHString(Object) is called for conversion.

STRING

A string expression evaluates an Object or HString returning a String as the result.

FEATURE

Hermes Architecture and User Guide 36

A feature expression evaluates an Object or HString returning a machine learning Feature as the
result.

OBJECT

An object expression evaluates an Object or HString returning an object as the result (this is used for
Lists).

NUMERIC

A numeric expression evaluates an Object or HString returning a numeric result.

COUNTER

A counter expression evaluates an Object or HString returning a Counter result.

This

The $_ (or this) operator represents the current object in focus, which by default is the object passed
into one of the LyreExpression’s apply methods. Note that one-argument methods in Lyre (e.g. lower,
isUpper, etc.) have an implied $_ argument if none is given.

Literals

String Literals: Lyre allows for string literals to be specified using single quotes ('). The backslash
character can be use to escape a single quote if it is required in the literal.

'Orlando'
'\'s'

Numeric Literals: Lyres accepts numerical literal values in the form of ints and doubles and allows
for scientific notation. Additionally, negative and positive infinity can be expressed as -INF and INF
respectively and NaN as NaN.

12
1.05
1e-5

Null: Null values are represented using the keyword null.

$_ = null

Boolean Literals: Boolean values are represented as true and false.

isStopWord = true

Hermes Architecture and User Guide 37

Lists

A list of literals or expressions can be defined as follows:

[1.0, 2.0, 3.0]
['Orlando', 'Dallas', 'Phoenix']
[lower, upper, lemma]

Note when a list is the return type and the returned list would have a single item the single item is
returned instead. For example, if a method generated the list [1], the value 1 would be returned
instead of the list.

Length: The length of a list is determined using the `llen' method as follows:

llen(@ENTITY)

where we are returning the length of the list of entities on the object in focus.

List Accessors: Lyre provides three methods for accessing a list of items:

• first(LIST): Return the first element of a list expression or null if none.

• last(LIST): Return the last element of a list expression or null if none.

• get(LIST, INDEX): Gets the i-th element in the given list or null if the index is invalid.

The following code snippet illustrates using these three accessor methods:

first(@ENTITY) ①
last(@ENTITY) ②
get(@TOKEN, 10) ③

① Returns the first entity overlapping the object in focus.

② Returns the last entity overlapping the object in focus.

③ Get the 10th token overlapping the object in focus.

List Selectors: Lyre provides two methods for selecting the best item in a list:

• max(LIST, INDEX): Return the annotation in the list expression with maximum confidence as
obtained via the CONFIDENCE attribute or null if none.

• longest(LIST, INDEX): Return the longest (character length) element of a list expression or null if
none.

The following code snippet illustrates using these two selection methods:

Hermes Architecture and User Guide 38

max(@ENTITY) ①
longest(@ENTITY) ②

① Gets the entity with maximum confidence overlapping the object in focus.

② Gets the entity with longest character length overlapping the object in focus. Note that unlike max
the entity returned from longest may not be the one they system is most confident in, but instead is
the one that covers the most amount of text.

List Transforms: Lyre provides three methods of transforming a list:

• map(LIST, EXPRESSION): The map operator applies the given expression to each element of the given
list.

• filter(LIST, EXPRESSION): The filter operator retains items from the given list for which the given
expression evaluates to true.

• flatten(LIST): Flattens all elements in a list recursively.

Note that Lyre will create a one-item list if the list item passed in is not a collection. The following code
snippet illustrates using these three transform methods:

map(@PHRASE_CHUNK, lower) ①
filter(@TOKEN, isContentWord) ②
flatten(map(@TOKEN, ['p1=' + $_[:-1], 'p2=' + $_[:-2]])) ③

① Lower cases each phrase chunk overlapping the current object in focus. (Note this is the same as
lower(@PHRASE_CHUNK))

② Keeps only the tokens overlapping the current object in focus which are content words. (Note this is
the same as isContentWord(@TOKEN))

③ Create a flattened list of unigram and bigram prefixes of all tokens on the current HString.

List Predicates: Lyre provides three methods for testing a list based on its items:

• any(LIST, EXPRESSION): Returns true if any item in the given list evaluates to true for the given
predicate expression.

• all(LIST, EXPRESSION): Returns true if all items in the given list evaluates to true for the given
predicate expression.

• none(LIST, EXPRESSION): Returns true if none of the items in the given list evaluates to true for the
given predicate expression.

Note that Lyre will create a one-item list if the item passed in is not a collection. The following code
snippet illustrates using these three predicate methods:

Hermes Architecture and User Guide 39

any(@TOKEN, isStopWord) ①
all(@TOKEN, isContentWord) ②
none(@TOKEN, isContentWord) ③

① Returns true if any token overlapping the object in focus is a stopword, e.g. it would evaluate to true
when being tested on "the red house" and false when tested on "red house".

② Returns true if all tokens overlapping the object in focus are content words, e.g. it would evaluate to
true when being tested on "red house" and false when tested on "the red house".

③ Returns true if none of the tokens overlapping the object in focus are content words, e.g. it would
evaluate to true when being tested on "to the" and false when tested on "to the red house".

Operators

Logical Operators: Lyre provides a set of logical operators for and (&&), or (||), and xor (^) that can be
applied to two predicate expressions. Note that if a non-predicate expression is used it will evaluated
as a predicate in which case it will return false when the object being tested is null and true when not
null with the following checks for specific types of the expression being treated as a predicate:

1. Collection: true when non-empty, false otherwise.

2. CharSequence: true when not empty or null, false otherwise.

3. Lexicon: true when the item being tested is in the lexicon, false otherwise.

4. Number: true when the number is finite, false otherwise.

5. Part of Speech: false when the part-of-speech is "ANY" or null, true otherwise.

Negation: Lyre uses ! to denote negation (or not) of a predicate, e.g. !isLower negates the the string
predicate testing for all lowercase letters, returning true if the string passed in has any non-lowercase
letter.

Relational Operators: Lyre provides the standard set of relational operators, =, <, ⇐, >, >=, and !=. How
the left-hand and right-hand sides are compared is dependent on their type. The following table lists
the comparison rules.

LHS Type RHS Type Comparison

null ANY equality and inequality perform a reference check and all other
operations return false.

ANY null equality and inequality perform a reference check and all other
operations return false.

NUMBER NUMBER double-based numeric comparison.

TAG TAG equality and inequality check based on isInstance(Tag) all other
operations perform comparison based on the name of the tags.

Hermes Architecture and User Guide 40

LHS Type RHS Type Comparison

TAG TAG equality and inequality check based on isInstance(Tag) all other
operations perform comparison based on the name of the tags.

instanceOf(RHS) instanceOf(LHS) Standard object-based comparison.

CharSequence CharSequence string-based comparison.

ANY NOT
CharSequence

Tries to convert the LHS into the type of the RHS and reapplies the
rules.

NOT
CharSequence

ANY Tries to convert the RHS into the type of the LHS and reapplies the
rules.

Pipe Operators: Lyre provides two pipe operators. The first is the And-pipe operator &> which
sequentially processes each expression with the output of the previous expression or the input object
for the first expression. All expression are evaluated regardless of whether or not a null value is
encountered. The second is the Or-pipe operator |> which sequentially processes each expression with
the input object, returning the result of the first expression that evaluates to a non-null, non-empty list,
or finite numeric value.

map(@TOKEN, lower &> s/\d+/#/g) ①
map(@TOKEN, filter($_, isContentWord) |> 'STOPWORD') ②

① Maps the tokens overlapping the object in focus first to lowercase and then for each lowercase
token replaces all digits with "#".

② Maps the tokens overlapping the object in focus to themselves when they are content words and to
the literal value 'STOPWORD' when they are not content words.

Plus: The plus operator, +, can be used to concatenate strings, perform addition on numeric values, or
append to a list. Which operation is performed depends on the LHS and RHS type as follows in order:

LHS Type RHS Type Comparison

Collection ANY Add the RHS to the collection unless the RHS is null.

null Collection Return the RHS.

HString HString Perform a union of the two Hstring.

NUMBER NUMBER Add the two numeric values together.

null null Return an empty list.

null ANY Return the RHS.

ANY null Return the LHS.

ANY ANY Return the concatenation of the two objects' string representation.

Membership Operators: Lyre provides to membership operators the in and the has operator. The in

Hermes Architecture and User Guide 41

operator, LHS in RHS, checks if the left-hand object is "in" the right-hand object, where in means
"contains". Lyre is able to handle collections, lexicons, and CharSequence as the right-hand object.

'a' in 'hat' ①
'dog' in ['cat', 'dog', 'bird'] ②

① Returns true if the character 'a' is the string 'hat'.

② Returns true if the string 'dog' is in the given list.

The has operator, LHS has RHS, checks if any annotations on the LHS HString evaluates to true using the
right-hand expression.

$_ has #NP(@PHRASE_CHUNK)

The code snippet above checks if the current HString in focus has any phrase chunks whose part-of-
speech is NP (Noun Phrase).

Slice Operator: Performs a slice on Strings and Collections where a slice is a sub-string or sub-list.
Slices are defined using the square brackets, [and], with the starting (inclusive) and ending
(exclusive) index separated by a colon, e.g. [0:1]. The starting or ending index can be omitted, e.g. [:1]
or [3:], where the implied starting index is 0 and the implied ending index is the length of the object.
Additionally, the ending index can be given as a relative offset to the end of the item, e.g. [:-2]
represents a slice starting at 0 to item length -2. An example of the slice operator is as follows:

$_[:-1] ①
$_[2:] ②
['A', 'B', 'C'][0:2] ③
['A', 'B', 'C'][0:4] ④
['A', 'B', 'C'][40:] ⑤

① Creates a substring starting at 0 and ending at the length of the string - 1.

② Creates a substring starting at 2 and ending at the length of the string

③ Creates a sub-list starting at index 0 and ending at index 2 (exclusive).

④ Creates a sub-list starting at index 0 and ending at index 4(exclusive). Note that the list is of length 3
and therefore will return a copy of the entire list.

⑤ Creates a sub-list starting at index 40 and ending at the last item in the list. Note that the list is of
length 3 and therefore will return an empty list as there is no 40th item.

Length: The length in characters of the string representation of an object or the number of items in a
list can be determined using the len method.

Hermes Architecture and User Guide 42

Conditional Statements

If: The if-then ,if(PREDICATE, TRUE_EXPRESSION, FALSE_EXPRESSION), method performs a given true or
false expression based on a given condition. The following example snippets checks if the object in
focus is a digit and when it is returns the string literal '[:digit:] and when it is not returns the item.

if(isDigit, '[:digit:]', $_)

When: The when, when(PREDICATE, TRUE_EXPRESSION), performs the given expression when the given
condition is true and returns null when the condition is false. The following example snippets checks if
the length of the item in focus is greater than three and when it is returns the concatenation of the
string literal 's3=' and the substring/sublist starting at index 3 to the end of the item.

when(len > 3, 's3=' + $_[-3:])

Not Null: The not null,nn(EXPRESSION, DEFAULT_VALUE_EXPRESSION), returns the result of the given
expression when not null and the result of the default value expression when null. The following
example snippets checks for the existence of entities on the object in focus and when there are none
(the empty list is automatically converted into a null value) will return the string literal 'non-entity'.

nn(@ENTITY, 'non-entity')

Predicates

Match All: The all predicate, ~, returns true for all input.

Exists: The exists predicate, exists(OBJECT) checks if the Object exists meaning it is not null and not
a blank CharSequence or empty list.

exists(@ENTITY)

The code snippet above checks if the object in focus has at least one overlapping entity returning true
if it does and false otherwise.

Look Behind: The positive, (?< …), and negative, (?!< …), look behind predicates determine if the
previous annotation matches (positive) or does not match (negative) the given expression. Note that
positive and negative look behinds should be done on single HStrings or used in a list operator.

Hermes Architecture and User Guide 43

(?< /M[rs]\\./g) #NNP ①
filter(@TOKEN, (?< /M[rs]\\./g) #NNP) ②

(?!< /M[rs]\\./g) #NNP ③
filter(@TOKEN, (?< /M[rs]\\./g) #NNP) ④

① Positive look behind returning true if the HString in focus is a proper noun and is preceded by a
Mr. os Ms.

② Positive look behind returning a list of tokens which are proper nouns and are preceded by Mr. or
Ms.

③ Negative look behind returning true if the HString in focus is a proper noun and is not preceded by
a Mr. os Ms.

④ Negative look behind returning a list of tokens which are proper nouns and are not preceded by
Mr. or Ms.

Look Ahead: The positive, (?> …), and negative, (?!> …), look ahead predicates determine if the
next annotation matches (positive) or does not match (negative) the given expression. Note that
positive and negative look aheads should be done on single HStrings or used in a list operator.

#NNP (?> $_ = 'inc.') ①
filter(@TOKEN, #NNP (?> $_ = 'inc.')) ②

#NNP (?!> $_ = 'inc.') ③
filter(@TOKEN, #NNP (?!> $_ = 'inc.')) ④

① Positive look ahead returning true if the HString in focus is a proper noun and is followed by the
word "inc.".

② Positive look behind returning a list of tokens which are proper nouns and are followed by the
word "inc.".

③ Negative look behind returning true if the HString in focus is a proper noun and is not followed by
the word "inc.".

④ Negative look behind returning a list of tokens which are proper nouns and are not followed by the
word "inc.".

String Matching: Lyre provides the following predicates for matching strings:

• isLower(OBJECT): Returns true if the string version of the object is all lowercase.

• isUpper(OBJECT): Returns true if the string version of the object is all uppercase.

• isWhitespace(OBJECT): Returns true if the string version of the object is all whitespace.

• isLetter(OBJECT): Returns true if the string version of the object contains only letters.

• isDigit(OBJECT): Returns true if the string version of the object contains only digits.

Hermes Architecture and User Guide 44

• isAlphaNumeric(OBJECT): Returns true if the string version of the object contains only
alphanumeric characters.

• isPunctuation(OBJECT): Returns true if the string contains all punctuation characters.

• isContentWord(OBJECT): Returns true if the string / HString is a non-stopword.

• isStopWord(OBJECT): Returns true if the string / HString is a stopword.

• hasStopWord(OBJECT): Returns true if the string / HString contains a stopword, i.e. any token in the
HString is a stopword.

• /PATTERN/: Returns *true if the string / HString matches the given regular expression where the
regex can have the options i for case-insensitive and g for matching the full span.

Note that for all methods listed above, the OBJECT is optional and will default to $_ if not specified.

Tag Matching: The tag predicate, #TAG_VALUE(OBJECT), checks if the Tag on the object in focus is of the
given Tag value. Note that object in focus must be an annotation and the tag value needs to be
convertible to that annotation’s tag type.

filter(@TOKEN, #NNP)①

filter(@ENTITY, #PERSON) ②

① Filter all tokens on the object in focus only retaining those that have a NNP part-of-speech.

② Filter all entities on the object in focus only retaining those with an entity type of PERSON.

Transforms

String transforms: Lyre provides the following methods for transforming objects into a string
representation:

• string(OBJECT): Transforms the input into a string by calling the toString() method.

• lower(OBJECT): Transforms the input into a lowercase string.

• upper(OBJECT): Transforms the input into an uppercase string.

• lemma(OBJECT): Transforms the input into the lemmatized version.

• stem(OBJECT): Transforms the input into the stemmed version.

• s/pattern/replacement/[ig]*: Transforms the input by performing a regular expression substitution
with where the i option indicates a case-insensitive match and g indicates replace-all. Note that this
method is accessible via the LyreDSL through the rsub set of methods.

All of the methods listed above can specified by their name only, e.g. string, when taking $_ (this) as
the argument.

Apply transform: Lyre uses LHS ~= RHS to denote that the RHS expression is to be applied to the LHS
expression. This is especially useful for regular expression matching and substitution.

Hermes Architecture and User Guide 45

$_ ~= /[Oo]rlando/; ①
@PHRASE_CHUNK ~= [lower, upper] ②

① Applies the regular expression match as a predicate to the current object in focus.

② Applies the list of Lyre expressions to each phrase chunk in the object in focus returning a List of
two-element lists where the first element is the lowercase version and the second element the
uppercase version of the phrase chunk.

Context Expansion: The context method, cxt(HSTRING, CONTEXT_SIZE), returns a contextual (previous
or next) token for the given HString at the given position (relative) where a positive value for the
context size represents a next contextual token and a negative value a previous contextual token.

cxt($_, -1) ①
cxt($_, 10) ②

① Returns the token left of the current HString.

② Returns the token 10 to the right of the current HString.

String Padding:

• lpad(OBJECT, MINIMUM_LENGTH, PADDING_CHARACTER): Transforms the string version of the input
object to ensure it is of the minimum length by prepending the padding character.

• rpad(OBJECT, MINIMUM_LENGTH, PADDING_CHARACTER): Transforms the string version of the input
object to ensure it is of the minimum length by appending the padding character.

Note that in both lpad and rpad if the given PADDING_CHARACTER has a length > 1 only the first
character is used.

lpad('ab', 4, '^'); ①
rpad('ab', 3, '$') ②

① Pads the given input literal ab to be of length 4 by prepending ^ resulting in ^^ab.

② Pads the given input literal ab to be of length 3 by appending $ resulting in ab$.

HString Trimming: The trim, trim(HSTRING, PREDICATE), method removes tokens from the left and
right of the input HString if they evaluate to true with the given predicate. The following code snippet
trims token from the input HString when they are a stopword or have a length less than three
characters.

trim($_, isStopWord || len < 3)

Hermes Architecture and User Guide 46

AnnotatableType Accessors

Annotation Accessors: Lyre provides the following methods for accessing the annotations on an
HString:

• @ANNOTATION_TYPE: Return a list of the annotation for the given ANNOTATION_TYPE overlapping the
HString in focus.

• @ANNOTATION_TYPE{TAG}: Return a list of the annotation for the given ANNOTATION_TYPE overlapping the
HString in focus filtered to only those whose tag is an instance of the given tag value.

• interleave('ANNOTATION_TYPE', …, 'ANNOTATION_TYPE'): Return a list of the annotation for the given
ANNOTATION_TYPE overlapping the HString in focus using the HString.interleave(AnnotationType…)
method. Note that the AnnotationType names are given as string literals.

• @>RELATION_TYPE: Retrieves a list of the annotations that are reachable via an outgoing relation for
the given RELATION_TYPE.

• @>RELATION_TYPE{'RELATION VALUE'}: Retrieves a list of the annotations that are reachable via an
outgoing relation for the given RELATION_TYPE and having the given RELATION_VALUE.

• @>: Retrieves a list of the annotations that are reachable via an outgoing dependency relation.

• @>{'DEPENDENCY_TYPE'}: Retrieves a list of the annotations that are reachable via an outgoing
dependency relation of given DEPENDENCY_TYPE.

• @<RELATION_TYPE: Retrieves a list of the annotations that are reachable via an incoming relation for
the given RELATION_TYPE.

• @<RELATION_TYPE{'RELATION VALUE'}: Retrieves a list of the annotations that are reachable via an
incoming relation for the given RELATION_TYPE and having the given RELATION_VALUE.

• @<: Retrieves a list of the annotations that are reachable via an incoming dependency relation.

• @<{'DEPENDENCY_TYPE'}: Retrieves a list of the annotations that are reachable via an incoming
dependency relation of given DEPENDENCY_TYPE.

Note that in call cases if the returned list has a single annotation, the single annotation will be returned
instead.

The following code snippet shows examples of extracting annotations in Lyre.

@ENTITY ①
@TOKEN(@ENTITY) ②
@>COREFERNCE{'pronominal'} ③
@<dep{'nsubj'} ④
@ENTITY{PERSON} ⑤

① Returns a list of annotations (or single annotation if only one) of the entities overlapping the object
in focus, $_, realized as an HString using HString.toHString(Object).

② For each Entity annotation overlapping the object in focus, extract the tokens as a list, which results
in a list of object where the object is a single annotation or list of annotations.

Hermes Architecture and User Guide 47

③ Get all annotations reachable via an outgoing COREFERENCE relation from the object in focus
where the COREFERENCE relation has the value "pronominal".

④ Get all annotations reachable via an incoming dependency relation from the object in focus where
the dependecy relation has the type "nsubj".

⑤ Returns a list of annotations of the PERSON entities overlapping the object in focus.

Attributes: Lyre provides the following methods for accessing the attributes on an HString:

• $ATTRIBUTE_TYPE(OBJECT): Retrieves the value of the given ATTRIBUTE_TYPE on the object in focus.

• pos(OBJECT): Gets the part-of-speech tag on the object in focus.

• upos(OBJECT): Gets the universal part-of-speech tag on the object in focus.

*Token Length: To determine the number of tokens in an object in focus the tlen method is available.

Lexicons and Word Lists

Lexicons: The lexicon function, %LEXICON_NAME, Returns the lexicon with the given LEXICON_NAME using
Hermes’s LexiconManager. The returned lexicon can then be used to check of the existence of words.
The following snippet gives two examples of checking if the object in focus is in a lexicon named
person:

$_ in %person
%person

As can be seen in the snippet above, the lexicon acts as a predicate checking for existence.

Word Lists: The word list function, wordList(LIST_EXPRESSION), will create a temporary word list for
use. The following code snippet shows an example of constructing a temporary word list made up of
the strings "dog", "cat", and "bird" and using the constructed word list as a container to check if the
object in focus’s string representation if one of the items in the word list.

$_ in wordList(['dog', 'cat', 'bird'])

Feature and Count Generators

Feature Generator: Lyre provides the following methods for easily constructing lists of features:

• binary{'PREFIX'}(EXPRESSION): Converts the list of values returned by the given EXPRESSION into
binary features prefixed with the given PREFIX.

• binary(EXPRESSION): Converts the list of values returned by the given EXPRESSION into binary
features.

• frequency{'PREFIX'}(EXPRESSION): Converts the list of values returned by the given EXPRESSION into

Hermes Architecture and User Guide 48

features prefixed with the given PREFIX whose values are number of times it occurred in the list.

• frequency(EXPRESSION): Converts the list of values returned by the given EXPRESSION into features
prefixed whose values are number of times it occurred in the list.

• L1{'PREFIX'}(EXPRESSION): Converts the list of values returned by the given EXPRESSION into
features prefixed with the given PREFIX whose values are number of times it occurred in the list
divided by the total number of items in the list.

• L1(EXPRESSION): Converts the list of values returned by the given EXPRESSION into features whose
values are number of times it occurred in the list divided by the total number of items in the list.

• iob('ANNOTATION_TYPE'): Generates IOB-formatted tags for the given ANNOTATION_TYPE overlapping
the object in focus.

• iob('ANNOTATION_TYPE', OBJECT): Generates IOB-formatted tags for the given ANNOTATION_TYPE
overlapping the given OBJECT.

binary{'WORD'}(@TOKEN)①
frequency{'WORD'}(@TOKEN)②
K1{'WORD'}(@TOKEN)③
iob('PHRASE_CHUNK', @SENTENCE) ④

① Generates a list of binary features containing the string form of the tokens overlapping the object in
focus with a 'WORD' prefix.

② Generates a list of features with frequency counts containing the string form of the tokens
overlapping the object in focus with a 'WORD' prefix.

③ Generates a list of features with L1 normalized frequency counts containing the string form of the
tokens overlapping the object in focus with a 'WORD' prefix.

④ Generates iob formatted chunk part-of-speech tags over the sentences overlapping the object in
focus.

Count Generator: Lyre provides the following methods for easily creating Counters over lists of items:

• count(EXPRESSION, 'VALUE_CALCULATOR'), counts the items in the list obtained from given
EXPRESSION converting the values using the ValueCalculator corresponding to the given literal value
'VALUE_CALCULATOR'.

• count(EXPRESSION), counts the frequency of the items in the list obtained from given EXPRESSION.

4.3. Keyword Extraction
Keyword extraction is the processing of identify key phrases or concepts that a document or collection
of document is discussing. There are a number of methods defined for extracting keywords in the NLP
literature that range from simple phrase counting to machine learning models that extract phrases
from a controlled vocabulary. In general, the various keyword extraction methodologies have a
combination of the follow characteristics:

Hermes Architecture and User Guide 49

• Unsupervised or Supervised: Much like machine learning keyword extraction be done in an
supervised fashion, often learning a mapping between documents and a controlled vocabulary, or
an unsupervised fashion, often in which phrase and corpus statistics are used to determine the
importance of phrases.

• Single Document or Corpus: Many of the early approaches to keyword extraction relied on corpus
level statistics and thus keywords could only be generated given a corpus. Newer approaches allow
for keyword extraction from a single document where corpus level statistics are not required.

In Hermes all keyword extraction methods implement the KeywordExtactor interface which is an
Extractor with the addition of a fit(corpus) method. The fit method is used when corpus level
statistics are needed in order to perform keyword extraction or when keyword extraction is performed
in a supervised manner.

Hermes provides the following keyword extractor implementations:

Class Name Requires Fit

TermKeywordExtractor

Extracts a set of keywords based on term frequency using an underlying FeautrizingExtractor, such as
a Lyre expression.

TFIDFKeywordExtractor

Extracts a set of keywords based on term frequency inverse document frequency (TFIDF) using an
underlying FeautrizingExtractor, such as a Lyre expression. The call to the fit(corpus) method is used
to calculate the document frequencies of the terms in the corpus

RakeKeywordExtractor

An implementation of the RAKE algorithm Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).
Automatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan (Eds.), Text
Mining: Theory and Applications: John Wiley & Sons.. Rake extracts contiguous spans of text which do
not contain stopwords as candidate keywords and scores the candidates based on their order and
frequency.

NPClusteringKeywordExtractor

An implementation of the keyword extractor defined in Bracewell, David B., Yan, Jiajun, and Ren, Fuji,
(2008), Single Document Keyword Extraction For Internet News Articles, International Journal of
Innovative Computing, Information and Control, 4, 905—913. The algorithm extracts noun phrases as
candidate keywords and then clusters the noun phrases into semantically coherent groups. These
groups are scored and the central noun phrase of the group is then used as a keyword with the
group’s score as its own.

TextRank

Hermes Architecture and User Guide 50

An implementation of the TextRank algorithm for keyword extraction defined in Mihalcea, R., Tarau,
P.: "Textrank: Bringing order into texts". In: Lin, D., Wu, D. (eds.) Proceedings of EMNLP 2004. pp.
404–411. Association for Computational Linguistics, Barcelona, Spain. July 2004..

4.4. Token-Based Regular Expressions
Hermes provides a token-based regular expression engine that allows for matches on arbitrary
annotation types, relation types, and attributes, while providing many of the operators that are
possible using standard Java regular expressions. As with Java regular expressions, the token regular
expression is specified as a string and is compiled into an instance of of TokenRegex. The TokenRegex
class has many of the same methods as Java’s regular expression, but returns a TokenMatcher instead
of Matcher. The TokenMatcher class allows for iterating of the matches, extracting the match or named-
groups within the match, the starting and ending offset of the match, and conversion into a
TokenMatch object which records the current state of the match. Token regular expressions can act as
extractors where the extraction generates the HStrings matched for the default group. An example of
compiling a regular expression, creating a match, and iterating over the matches is as follows:

TokenRegex regex = TokenRegex.compile(pattern);
TokenMatcher matcher = regex.matcher(document);
while (matcher.find()) {
 System.out.println(matcher.group());
}

4.4.1. Regular Expression Syntax

The syntax for token-based regular expressions borrows from the Lyre Expression Language where
possible. Token-based regular expressions differ from Lyre in that they work over sequences of
HStrings whereas Lyre is working on single HString units. As such, there are differences in the syntax
between Lyre.

Content Matching

Content can be matched in the following manner:

• Any: The . operator can be used to match any HString.

• Case-Sensitive String Match: Matches based on a case-sensitive match to the string form of the
HString, expressed using double quotes, e.g. "ABC".

• Case-Insensitive String Match: Matches based on a case-insensitive match to the string form of the
HString, expressed using single quotes, e.g. 'ABC'.

• Lemmatized String Match: Matches based on a case-insensitive match to the lemmatized form of
the HString, expressed using the less than and greater signs, e.g. <ABC>.

• Lexicon Match: Matches against a lexicon can be made by expressing the name of the lexicon to

Hermes Architecture and User Guide 51

match against using %LEXICON_NAME.

"Orlando" ①
'orlando' ②
<fly> ③

① Case-sensitive match in which only HStrings containing only the word "Orlando" are matched.

② Case-insensitive match in which all capitalization variations of the word "orlando" are matched.

③ Case-insensitive match in which all HString whose lemmatized is "fly" will be matched (e.g., "flies",
"flew", and "flown").

Word Classes

The following word classes are defined:

• AlphaNumeric: Matches HStrings whose string form contains only alphanumeric characters.

• ContentWord: Matches HStrings which are content words, i.e. non-stopwords.

• HasStopWord: Matches HStrings which contain on or more stopwords.

• StopWord: Matches HStrings which are stopwords.

• Upper: Matches HStrings whose string form contains only uppercase letters.

• UpperInitial: Matches HStrings whose first character is an uppercase letter.

• Lower: Matches HStrings whose string form contains only lower letters.

• LowerInitial: Matches HStrings whose first character is a lowercase letter.

• Letter: Matches HStrings whose string form contains only letters.

• Digit: Matches HStrings whose string form contains only digits.

• Number: Matches HStrings which represents numbers as ascertained by their TOKEN_TYPE or
PART_OF_SPEECH attribute or whose string form contains only digits.

• Punctuation: Matches HStrings whose string form contains only punctuation.

• /PATTERN/[ig]*: Matches HStrings whose string form matches the given regular expression where
the regex can have the options i for case-insensitive and g for matching the full span.

Attributes

Token-based regular expressions allow for matching of attribute values including numeric
comparisons for number-valued attributes. The first set of attribute-based matching will match non-
numeric attributes, such as strings and tags.

Hermes Architecture and User Guide 52

$PART_OF_SPEECH = 'NOUN' ①
$PART_OF_SPEECH != 'NOUN' ②
$COLLECTION ~ 'VALUE' ③

① Equality check where tag-valued attributes are match if the value of the attribute is an instance of
the tag defined on the right-hand side and non-tag valued attributes are match if the value of the
left-hand side is equal to the value on the right-hand side.

② Inequality check where tag-valued attributes are match if the value of the attribute is not an
instance of the tag defined on the right-hand side and non-tag valued attributes are match if the
value of the left-hand side is not equal to the value on the right-hand side.

③ Containment check where a match is made when the value on the right-hand side is in the
collection of values associated with the attribute or is a substring of the string value of the left-hand
side.

Additionally, the full range of numeric comparisons are available:

$CONFIDENCE = 0.0
$CONFIDENCE != 0.0
$CONFIDENCE >= 0.50
$CONFIDENCE > 0.50
$CONFIDENCE <= 0.50
$CONFIDENCE < 0.50

Tags: Tag attributes can be easily matched using #TAG_VALUE, e.g. #NOUN for tokens would match all
tokens whose part-of-speech is a noun.

Categories: Whether or not an HString or one of its sub-spans contains a given category value can be
expressed using $CATEGORY ~ 'VALUE' or $CAT ~ 'VALUE' where the VALUE must be predefined
BasicCategory.

Annotations

Matches can include the existence of annotations including optional constraints on the match.
Annotations are declared using @ANNOTATION_TYPE and constraints can be specified using parenthesis,
i.e. @ANNOTATION_TYPE(…). The following code snippet gives examples:

@ENTITY($CONFIDENCE >= 0.90) ①
@PHRASE_CHUNK(#NP) @PHRASE_CHUNK(#VP) @PHRASE_CHUNK(#NP) ②

① Match all entities with a confidence value of 0.90 or more.

② Match sequences of phrase chunks in the form NP VP NP

Hermes Architecture and User Guide 53

That the syntax of matching with annotations is backwards compared to Lyre. In Lyre,
the first example in the snippet above would be expressed as $CONFIDENCE(@ENTITY) >=
0.90.

Relations

• @<RELATION_TYPE: Retrieves a the annotations that are reachable via an incoming relation of the
given type.

• @<RELATION_TYPE{'RELATION_VALUE'}: Retrieves a the annotations that are reachable via an incoming
relation of the given type and having the given relation value.

• @>RELATION_TYPE: Retrieves a the annotations that are reachable via an outgoing relation of the
given type.

• @>RELATION_TYPE{'RELATION_VALUE'}: Retrieves a the annotations that are reachable via an outgoing
relation of the given type and having the given relation value.

• @<: Retrieves a the annotations that are reachable via an incoming dependency relation.

• @<{'DEPENDENCY_TYPE'}: Retrieves a the annotations that are reachable via an incoming dependency
relation and having the given DEPENDENCY_TYPE.

• @>: Retrieves a the annotations that are reachable via an outgoing dependency relation.

• @>{'DEPENDENCY_TYPE'}: Retrieves a the annotations that are reachable via an outgoing dependency
relation and having the given DEPENDENCY_TYPE.

@PHRASE_CHUNK & @>{'nsubj'} ①
@<ROLE{'AGENT'}(@ENTITY(#PERSON)) ②

① Match all phrase chunks that have the 'nsubj' dependency relation.

② Match all HString which have an incoming "ROLE" relation with value "AGENT" and whose "AGENT"
is an entity of type PERSON

Greedy Qualifiers

The following set of greedy qualifiers are supported:

• Kleene Star: The * unary operator will match zero or more of the previously defined expression,
e.g. 'abc'* will match zero or more HString whose string form is a case-insensitive match to "abc".

• Kleene Plus: The + unary operator will match one or more of the previously defined expression,
e.g. 'abc'+ will match one or more HString whose string form is a case-insensitive match to "abc".

• Optional Marker: The ? unary operator denotes that previous expression is optional, i.e. matches
zero or one, , e.g. 'abc'? will match if the previous HString is empty or whose string form is a case-
insensitive match to "abc".

• Range Operator: A variable number of matches can be expressed using the range operator,

Hermes Architecture and User Guide 54

denoted using {minimum,maximum}, where the maximum can be omitted to denote matching an exact
number of times, have the value "*" denoting any number of maximum matches, or given numeric
value expression the maximum number of matches.

Logical Operators

Hermes’s token-based regular expressions also supports the following logical operators:

• Negation: The ^ operator denotes negation matching only when the next expression evaluates to
true.

• Alternations: Alternations can be expressed using | and act as an or on the matching, e.g.
('cat'|'dog') would match either "cat" or "dog".

• And: Ands can be expressed using & and require both the left-hand and right-hand sides to evaluate
to true for the current HString in order for it to match, e.g. @ENTITY(#PERSON & $CONFIDENCE >0.6)
would match entities which are only of type PERSON and have a confidence greater than 0.6.

• Non-Capturing Groups: Non-capturing groups are used to force the order of operation and are
denoted using parenthesis, e.g. ^('man' 'of') matches any two HStrings which whose sequence is
not equal to "man of".

Special Constructs

The following special constructs are supported:

Look Behind: The positive, (?< …), and negative, (?!< …), look behind predicates determine if the
previous annotation sequences matches (positive) or does not match (negative) the given expression.

(?< 'manager' 'of') @PHRASE_CHUNK(#NOUN)
(?!< #DT | #ADJECTIVE) <bank>

The first expression, from the snippet above, matches noun phrases which are preceded by the phrase
"manager of". The second example, matches all HStrings whose lemmatized form is "bank" and are not
preceded by a determiner or adjective.

Look Ahead: The positive, (?> …), and negative, (?!> …), look ahead predicates determine if the
next annotation sequence matches (positive) or does not match (negative) the given expression.

PHRASE_CHUNK(#NOUN) (?> PHRASE_CHUNK(#VERB))
Digit (?!> Punctuation)

The first expression, from the snippet above, matches noun phrases which are followed by verb
phrases. The second example, matches all HStrings which represent Digits and are not followed by
punctuation.

Named Groups: Named groups can specified using (?<NAME> …). The groups captured HString is

Hermes Architecture and User Guide 55

accessed using TokenMatcher.group(String) where the String is the group name. The following example
illustrates a named group:

(?<PERSON> @ENTITY(#PERSON))

Backreference: Backreference to named groups is possible using \GROUP_NAME.

(?<PERSON> @ENTITY(#PERSON)) .* PHRASE_CHUNK(#VERB & @<{'nsubj'}(\PERSON))

The example snippet above matches all sequences in which a person entity is followed by a distant
verb phrase for which the the nsubj is the matched person entity. Note that the backreference will
match when there is overlap of between the HString in the named group and the HString being
examined for the backreference.

Take a look at TokenRegexExample.java in the Hermes examples project to see
example patterns.

4.5. Caduceus
Caduceus, pronounced ca·du·ceus, is a rule-based information extraction system. Caduceus programs
consist of a list of rules for extracting arbitrary spans of text to define annotations (e.g. entities and
events) and relations (e.g. event roles). Each rule starts with a unique name declared in square
brackets, e.g. [my_rule]. Following the rule name is the trigger, which is a Token-Based Regular
Expressions that captures the text causing the rule to fire. Example triggers are as follows:

trigger: (<man> | <woman> | <child> | <baby>) ①
trigger: (?<PERSON> @ENTITY(#PERSON)) (?<ACTION> @PHRASE_CHUNK(#VERB)) (?<OBJECT> @PHRASE_CHUNK(#NOUN))
②

① A simple trigger that fires for HStrings whose lemmatized form match one of the given lemmas.

② A trigger that requires a PERSON entity followed by verb phrase followed by a noun phrase, which
each item being a named group.

Rules construct annotations and/or relations based on the matched trigger. A rule may have define
zero or more annotations to be constructed. Each annotation is defined using annotation: and requires
the following options to be specified:

• capture=(*|GROUP_NAME): The text span which will make up the annotation, where * represents the
full trigger match and GROUP_NAME represents a named group from the trigger match.

• type=ANNOTATION_TYPE: The name of the annotation type to construct.

Additionally, attributes can be defined using as follows:

Hermes Architecture and User Guide 56

$ATTRIBUTE_NAME = VALUE

An example of a rule to create ENTITY annotations of type PERSON and BODY_PART is as follows:

//###
// Entity: PERSON - Identifies PERSON entities from Alice in Wonderland
//###
[person]
trigger: ('alice' | 'rabbit' | ('white' 'rabbit') | ('mad' 'hatter'))
annotation: capture=*
 type=ENTITY
 $ENTITY_TYPE=PERSON
 $CONFIDENCE=1.0

//###
// Entity: BODY_PART - Identifies body part entities.
//###
[body_parts]
trigger: ((<eye> | <ear> | <arm> | <leg> | <head>) && #NOUN)
annotation: capture=*
 type=ENTITY
 $ENTITY_TYPE=BODY_PART
 $CONFIDENCE=1.0

 Comments are specified using //.

A rule may have define zero or more relations to be constructed. Each relation is defined using
relation: NAME, where NAME is unqiue in the rule. Relations require the following options to be
specified:

• type=RELATION_TYPE: The name of the relation type to construct.

• value=STRING: The value of the relation type.

• @>: The source of the relation specified using a Lyre Expression Language with an optional named
matching group defined like @>{GROUP_NAME}

• @<: The target of the relation specified using a Lyre Expression Language with an optional named
matching group defined like @>{GROUP_NAME}

Additionally, a relation can be defined as bidirectional by specifying bidirectional=true. An example of
a rule to create a HAS_A relation between a PERSON and BODY_PART is as follows:

Hermes Architecture and User Guide 57

//###
// Relation: HAS_A - Relates a BODY_PART to a PERSON
//###
[body_part_attributes]
trigger: (?<PERSON> @ENTITY(#PERSON)) "with" .{1,3} (?<BODY_PART> @ENTITY(#BODY_PART))
relation: has_a
 type=ATTRIBUTE
 value= HAS_A
 @>{PERSON}=@ENTITY
 @<{BODY_PART}=@ENTITY

In the example rule listed above, we define a trigger that matches a PERSON entity followed by the
word "with" followed by between one to three tokens, and finally followed by a BODY_PART entity. The
relation definition for HAS_A is named has_a and defines an ATTRIBUTE relation with value HAS_A
where the source of the relation is the PERSON entity and the target of the relation is the BODY_PART
entity.

In order to prevent superfluous matches, annotations and relations can have requirements on each
other specified using a requires statement. The use of requires can be seen in the following example
rule:

Hermes Architecture and User Guide 58

//###
// Murder - The killing of one person by another
// Roles:
// KILLER - The PERSON performing the murder
// VICTIM - The PERSON being murdered
// MANNER - The way in which the murder was performed
//###
[murder]
trigger: (?<EVENT> <murder> | <kill> | <shoot> | <stab> | <poison>)
annotation: capture=*
 type=EVENT
 $TAG=MURDER
 $CONFIDENCE=1.0
 requires=VICTIM
 requires=KILLER
relation: KILLER
 type=ROLE
 value=KILLER
 @>=@ENTITY{PERSON}(@<dep{'nsubj'})
 @<=$_
relation: VICTIM
 type=ROLE
 value=VICTIM
 @>=@ENTITY{PERSON}(@<dep{'dobj'})
 @<=$_
relation: MANNER
 type=ROLE
 value=MANNER
 @>=@<dep{'advmod'}
 @<=$_

As can be seen in the rule listed above, the MURDER event will only be created when a KILLER role
and VICTIM role can be specified.

4.5.1. Rule Processing and Execution

Rules are processed sequentially starting at the first defined rule in a Caduceus program file. This
allows rules to be split apart with each being as simple as possible. Please note that Caduceus is not
designed for blazing performance, but for ease of use.

Caduceus programs can be executed over corpora or single documents as the following code snippet
illustrates.

Hermes Architecture and User Guide 59

CaduceusProgram events = CaduceusProgram.read(Resources.from("/data/caduceus/events.cg"));

Corpus corpus = ...;
corpus.update(events); ①

Document document = ...;
events.execute(document); ②

① Caduceus programs can be executed over a corpus using the corpus update(CaduceusProgram)
method.

② Individual documents can be processed by calling the execute(Document) method on the
CaduceusProgram.

Take a look at CaduceusExample.java in the Hermes examples project to see a
complete example.

5. Workflows
A workflow represents a set of actions to perform on an document collection. Actions fall into one or
more of the following three categories:

1. Modify - The action modifies the documents in the collection, e.g. adds new annotations or
attributes.

2. Compute - The action generates information that is added to the Context for use by downstream
actions.

3. Output - The action generates an output for consumption by external processes and/or downstream
actions.

Actions share a common key-value memory store, called a Context, in which information they require
or they generate can be added.

Figure 5. Example of Sequential Workflow

The figure illustrated above gives an example of a sequential workflow where an document collection
is passed through a series of three actions each of which update (Modify) the collection and the
context. The Workflow Runner the can save the final output to file.

Hermes Architecture and User Guide 60

5.1. Contexts
Contexts are a specialized map that act as a shared memory for a Workflow. The context will retrieve
values from its internal storage and also fallback to checking for values in the global configuration.

5.2. Actions
An action defines a processing step to perform on a DocumentCollection with a given Context which
results in either modifying the corpus or the context. Action implementations can persist their state to
be reused at a later time including across jvm instances and runs. This is done by implementing the
loadPreviousState(DocumentCollection,Context) method to modify the corpus and/or context based on
its saved state. An action can ignore its state and reprocess the corpus when either the config setting
processing.override.all is set to true or the config setting className.override is set tp true.

5.3. Defining a Workflow
Workflows are defined using Json. The follow is an example definition:

{
 "@type" : "Sequential",
 "context": {
 "alpha": {"@class": "double", "@value": 0.2}
 },
 "beans" : {
 "ANNOTATOR" : {
 "@singleton": true,
 "@class": "com.gengoai.hermes.workflow.actions.Annotate",
 "types": "${CORE_ANNOTATIONS}"
 }
 },
 "actions": [
 "@ANNOTATOR",
 {
 "@class": "com.gengoai.hermes.workflow.actions.TermCounts",
 "extractor": "lower(filter(@TOKEN,isContentWord))",
 "documentFrequencies": true
 }
]
}

Each workflow json must specify the workflow type (currently only Sequential workflows are
supported). An initial set of key-value pairs can be specified in the "context" section. Note that its
require to specify values as json objects in the format {"@class":"java class name", "@value": value}.
The json format allows for reusable beans to be defined in the "beans" section. The bean format uses
the bean name as the key for a json object which is made up of a "@class" property to define the fully
qualified class name, "@singleton" to optionally define the object as a singleton, and all setters are

Hermes Architecture and User Guide 61

defined as properties in the object, e.g. "types" relates to the setTypes method of the Annotate action.
Finally the set of actions are defined as an array within the "actions" object.

6. Hermes Applications
The Hermes distribution provides a number of command line utilities for working with corpora,
workflows, lexicons, and embeddings. The entry point is the hermes script, which is used in the
following manner:

./hermes ACTION [OPTIONS]

where ACTION can be:

• An application name, e.g. ./hermes corpus ….

• download - downloads the models for a given language, e.g. ./hermes download ENGLISH

• -ls - list the available applications, e.g. ./hermes -ls

• (help|-h) - show the help, e.g. ./hermes -h

The hermes script expects java version 11.0 or higher to be on your path. The script will check for the
HERMES_RESOURCES environment variable to point to the directory where it should look for resources. By
default, it will look for and store resources in the 'resources' directory under the current working
directory. The script will check for the JAVA_OPTS command line variable to determine extra options for
the jvm. By default it will generate a JAVA_OPTS with -Xmx8g.

6.1. Corpus Application
The corpus application allows for generating, annotation, and querying corpora. One of the following
commands is expected as the first argument to the application:

INFO Displays the number of documents and completed AnnotatableType for the
corpus.

QUERY Queries the corpus with the given query returning the top 10 results.

GET Gets the given document (or a random one if rnd is given) in Json format.

IMPORT Imports the documents from the input document collection into the corpus.

ANNOTATE Annotates the corpus with the given annotatable types.

FORMATS List the available document formats and their parameters.

In addition, the following arguments are used for the varying commands:

• docFormat | df - The specification or location the corpus or document collection to process.

Hermes Architecture and User Guide 62

• corpus | c - The specification or location to save the output of the processing.

• types | t - Annotations to add. (default:
Annotation.TOKEN,Annotation.SENTENCE,Attribute.PART_OF_SPEECH,Attribute.LEMMA,Relation.D
EPENDENCY,Annotation.PHRASE_CHUNK,Annotation.ENTITY)

6.2. Workflow Application
The workflow application allows for you to run a work flow over a given document collection / corpus.
The following command line arguments are available:

• definition - The workflow definition.

• input | i | corpus - The specification or location the document collection to process.

• contextOutputLocation | oc - Location to save context

[1] See the Mango User Guide for details on the Graph data structure.

Hermes Architecture and User Guide 63

	Hermes Architecture and User Guide
	Table of Contents
	1. Overview
	2. Installation
	3. Core Classes
	3.1. AnnotatableType
	3.1.1. AttributeType
	3.1.2. AnnotationType
	3.1.3. RelationType
	3.1.4. Annotators

	3.2. HString
	3.3. Annotation
	3.3.1. Creating Annotations
	3.3.2. Tags
	3.3.3. Core Annotations

	3.4. Relation
	3.4.1. Dependency Relations
	3.4.2. Relation Graphs

	3.5. Document
	3.5.1. Creating Documents
	3.5.2. Working with Documents

	3.6. Document Collections and Corpora
	3.6.1. Document Formats
	3.6.2. Document Collection Creation
	3.6.3. Working with Document Collections and Corpora
	Accessing Documents
	Manipulating the Corpus and its Documents
	Querying
	Frequency Analysis
	Extracting N-Grams
	Sampling
	Grouping

	4. Text Mining
	4.1. Lexicons
	4.1.1. Reading and Writing Lexicons
	4.1.2. Word Lists

	4.2. Lyre Expression Language
	4.2.1. Lyre Syntax
	This
	Literals
	Lists
	Operators
	Conditional Statements
	Predicates
	Transforms
	AnnotatableType Accessors
	Lexicons and Word Lists
	Feature and Count Generators

	4.3. Keyword Extraction
	4.4. Token-Based Regular Expressions
	4.4.1. Regular Expression Syntax
	Content Matching
	Word Classes
	Attributes
	Annotations
	Relations
	Greedy Qualifiers
	Logical Operators
	Special Constructs

	4.5. Caduceus
	4.5.1. Rule Processing and Execution

	5. Workflows
	5.1. Contexts
	5.2. Actions
	5.3. Defining a Workflow

	6. Hermes Applications
	6.1. Corpus Application
	6.2. Workflow Application

